Show Summary Details

Page of

Printed from Oxford Research Encyclopedias, Environmental Science. Under the terms of the licence agreement, an individual user may print out a single article for personal use (for details see Privacy Policy and Legal Notice).

date: 12 December 2024

Infiltration of Water Into Soillocked

Infiltration of Water Into Soillocked

  • John NimmoJohn NimmoIndependent Researcher
  • , and Rose ShillitoRose ShillitoUS Army Engineer Research and Development Center

Summary

The infiltration of water into soil has profound importance as a central component of the hydrologic cycle and as the means of replenishing soil water that sustains terrestrial life. Systematic quantitative study of infiltration began in the 19th century and has continued through to the present as a central topic of soils, soil physics, and hydrology. Two forces drive infiltration: gravity, and capillarity, which results from the interaction of air-water surface tension with the solid components of soil. There are also two primary ways water moves into and within the soil. One is diffuse flow, through the pores between individual soil grains, moving from one to the next and so on. The other is preferential flow, through elongated channels such as those left by worms and roots. Diffuse flow is slow and continues as long as there is a net driving force. Preferential flow is fast and occurs only when water is supplied at high intensity, as during irrigation, major rainstorms, or floods. Both types are important in infiltration. Especially considering that preferential flow does not yet have a fully accepted theory, this means that infiltration entails multiple processes, some of them poorly understood. The soil at a given location has a limit to how much water it can absorb—the infiltration capacity. The interplay between the mode and rate of water supply, infiltration capacity, and characteristics of the soil and surrounding terrain determines infiltration into the soil. Much effort has gone into developing means of measuring and predicting both infiltration capacity and the actual infiltration rate. Various methods are available, and research is needed to improve their accuracy and ease of use.

Subjects

  • Environmental Issues and Problems
  • Environmental Processes and Systems
  • Agriculture and the Environment

You do not currently have access to this article

Login

Please login to access the full content.

Subscribe

Access to the full content requires a subscription