1-4 of 4 Results  for:

  • Environments x
  • Environmental Processes and Systems x
Clear all

Article

Aerosols (tiny solid or liquid particles suspended in the atmosphere) have been in the forefront of environmental and climate change sciences as the primary atmospheric pollutant and external force affecting Earth’s weather and climate. There are two dominant mechanisms by which aerosols affect weather and climate: aerosol-radiation interactions (ARIs) and aerosol-cloud interactions (ACIs). ARIs arise from aerosol scattering and absorption, which alter the radiation budgets of the atmosphere and surface, while ACIs are connected to the fact that aerosols serve as cloud condensation nuclei and ice nuclei. Both ARIs and ACIs are coupled with atmospheric dynamics to produce a chain of complex interactions with a large range of meteorological variables that influence both weather and climate. Elaborated here are the impacts of aerosols on the radiation budget, clouds (microphysics, structure, and lifetime), precipitation, and severe weather events (lightning, thunderstorms, hail, and tornadoes). Depending on environmental variables and aerosol properties, the effects can be both positive and negative, posing the largest uncertainties in the external forcing of the climate system. This has considerably hindered the ability to project future climate changes and make accurate numerical weather predictions.

Article

Aijun Ding, Xin Huang, and Congbin Fu

Air pollution is one of the grand environmental challenges in developing countries, especially those with high population density like China. High concentrations of primary and secondary trace gases and particulate matter (PM) are frequently observed in the industrialized and urbanized regions, causing negative effects on the health of humans, plants, and the ecosystem. Meteorological conditions are among the most important factors influencing day-to-day air quality. Synoptic weather and boundary layer dynamics control the dispersion capacity and transport of air pollutants, while the main meteorological parameters, such as air temperature, radiation, and relative humidity, influence the chemical transformation of secondary air pollutants at the same time. Intense air pollution, especially high concentration of radiatively important aerosols, can substantially influence meteorological parameters, boundary layer dynamics, synoptic weather, and even regional climate through their strong radiative effects. As one of the main monsoon regions, with the most intense human activities in the world, East Asia is a region experiencing complex air pollution, with sources from anthropogenic fossil fuel combustion, biomass burning, dust storms, and biogenic emissions. A mixture of these different plumes can cause substantial two-way interactions and feedbacks in the formation of air pollutants under various weather conditions. Improving the understanding of such interactions needs more field measurements using integrated multiprocess measurement platforms, as well as more efforts in developing numerical models, especially for those with online coupled processes. All these efforts are very important for policymaking from the perspectives of environmental protection and mitigation of climate change.

Article

Julie Laity

Arid environments cover about one third of the Earth’s surface, comprising the most extensive of the terrestrial biomes. Deserts show considerable individual variation in climate, geomorphic surface expression, and biogeography. Climatically, deserts range from dry interior environments, with large temperature ranges, to humid and relatively cool coastal environments, with small temperature ranges. What all deserts share in common is a consistent deficit of precipitation relative to water loss by evaporation, implying that the biological availability of water is very low. Deserts develop because of climatic (persistent high-pressure cells), topographic (mountain ranges that cause rain shadow effects), and oceanographic (cold currents) factors that limit the amount of rain or snowfall that a region receives. Most global deserts are subtropical in distribution. There is a large range of geomorphic surfaces, including sand sheets and sand seas (ergs), stone pavements, bedrock outcrops, dry lakebeds, and alluvial fans. Vegetation cover is generally sparse, but may be enhanced in areas of groundwater seepage or along river courses. The limited vegetation cover affects fluvial and slope processes and results in an enhanced role for the wind. While the majority of streams in deserts are ephemeral features, both intermittent and perennial rivers develop in response to snowmelt in nearby mountains or runoff from distant, more well-watered regions. Most drainage is endoreic, meaning that it flows internally into closed basins and does not reach the sea, being disposed of by seepage and evaporation. The early study of deserts was largely descriptive. More process-based studies commenced with the study of North American deserts in the mid- to late-1800s. Since the late 20th century, research has expanded into many areas of the world, with notable contributions coming from China, but our knowledge of deserts is still more compete in regions such as North America, Australia, Israel, and southern Africa, where access and funding have been more consistently secure. The widespread availability of high-quality remotely sensed images has contributed to the spread of study into new global field areas. The temporal framework for research has also improved, benefiting from improvements in geochronological techniques. Geochronological controls are vital to desert research because most arid regions have experienced significant climatic changes. Deserts have not only expanded or contracted in size, but have experienced changes in the dominant geomorphic processes and biogeographic environment. Contemporary scientific work has also benefited from improvements in technology, notably in surveying techniques, and from the use of quantitative modeling.

Article

The terms “land cover” and “land use” are often used interchangeably, although they have different meanings. Land cover is the biophysical material at the surface of the Earth, whereas land use refers to how people use the land surface. Land use concerns the resources of the land, their products, and benefits, in addition to land management actions and activities. The history of changes in land use has passed through several major stages driven by developments in science and technology and demands for food, fiber, energy, and shelter. Modern changes in land use have been increasingly affected by anthropogenic activities at a scale and magnitude that have not been seen. These changes in land use are largely driven by population growth, urban expansion, increasing demands for energy and food, changes in diets and lifestyles, and changing socioeconomic conditions. About 70% of the Earth’s ice-free land surface has been altered by changes in land use, and these changes have had environmental impacts worldwide, ranging from effects on the composition of the Earth’s atmosphere and climate to the extensive modification of terrestrial ecosystems, habitats, and biodiversity. A number of different methods have been developed give a thorough understanding of these changes in land use and the multiple effects and feedbacks involved. Earth system observations and models are examples of two crucial technologies, although there are considerable uncertainties in both techniques. Cross-disciplinary collaborations are highly desirable in future studies of land use and management. The goals of mitigating climate change and maintaining sustainability should always be considered before implementing any new land management strategies.