1-10 of 35 Results  for:

  • Environmental History x
Clear all

Article

Basin Development Paths: Lessons From the Colorado and Nile River Basins  

Kevin Wheeler

Complex societies have developed near rivers since antiquity. As populations have expanded, the need to exploit rivers has grown to supply water for agriculture, build cities, and produce electricity. Three key aspects help to characterize development pathways that societies have taken to expand their footprint in river basins including: (a) the evolution of the information systems used to collect knowledge about a river and make informed decisions regarding how it should be managed, (b) the major infrastructure constructed to manipulate the flows of water, and (c) the institutions that have emerged to decide how water is managed and governed. By reflecting on development pathways in well-documented transboundary river basins, one can extract lessons learned to help guide the future of those basins and the future of other developing basins around the world.

Article

Ecological Water Management in Cities  

Timothy Beatley

Managing water in cities presents a series of intersecting challenges. Rapid urbanization, wasteful consumption, minimal efforts at urban or ecological planning, and especially climate change have made management of urban water more difficult. Urban water management is multifaceted and interconnected: cities must at once address problems of too much water (i.e., more frequent and extreme weather events, increased riverine and coastal flooding, and rising sea levels), but also not enough water (e.g., drought and water scarcity), as well as the need to protect the quality of water and water bodies. This article presents a comprehensive and holistic picture of water planning challenges facing cities, and the historical approaches and newer methods embraced by cities with special attention to the need to consider the special effects of climate change on these multiple aspects of water and the role of ecological planning and design in responding to them. Ecological planning represents the best and most effective approach to urban water management, and ecological planning approaches hold the most promise for achieving the best overall outcomes in cities when taking into account multiple benefits (e.g., minimizing natural hazards, securing a sustainable water supply) as well as the need to protect and restore the natural environment. There are many opportunities to build on to the history of ecological planning, and ecological planning for water is growing in importance and momentum. Ecological planning for water provides the chance to profoundly rethink and readjust mankind’s relationship to water and provides the chance also to reimagine and reshape cities of the 21st century.

Article

The Environmental History of the Antarctic  

Sebastian Grevsmühl

The environmental history of the polar regions, and in particular of Antarctica, is a rather recent area of inquiry that is in many ways still in its infancy. As a truly multidisciplinary research field, environmental history draws much inspiration from a large diversity of fields of historical and social research, including economic history, diplomatic history, cultural history, the history of explorations, and science and technology studies. Although overarching book-length studies on the environmental history of Antarctica are still rare, historical scholars have already conducted many in-depth case studies related mostly to three major interrelated research topics: Antarctic governance, natural resource exploitation, and tourism. These recent historical efforts, carried out mostly by a new generation of historians, have thus far allowed the proposal of several powerful counternarratives, challenging the frequent yet erroneous assertion that environmental protection and conservation were completely absent from Antarctic affairs before the 1970s. In so doing, environmental historians started offering a much more complex and nuanced account of what is frequently referred to as the “greening” of Antarctica, going well beyond “declensionist” narratives and conservation success stories that commonly pervade not only environmental histories but also public discourse. Indeed, all recent historical studies agree that there is nothing inevitable about the “greening” of Antarctica, nor are conservation and environmental protection its natural destiny. Science, politics, imperialism, capitalism, and imaginaries all have played their part in this important history, a history that remains still largely to be written.

Article

Transcontinental Meteorology Infrastructures From Ancient Mesopotamia to the Early Modern Age  

Robert-Jan Wille

The current global infrastructure of meteorology partly builds on older transcontinental structures of weather science and meteorological philosophy. For several millennia, the large belt stretching from East Asia, through mountains, silk roads, and the Indian Ocean, to the seas and river deltas where Western Eurasia and North Africa border on each other, has formed a key region. From Ancient Mesopotamia to the 16th century, a continuous and multi-site infrastructure emerged that was organized around meteorological texts, including not only scrolls, papyri, and manuscripts, but also ideas and concepts, as well as meteorological writers and readers traveling between institutions and storehouses. Not considering the long history of orally transmitted pre-Mesopotamian weather knowledge, the first large-scale textual infrastructures were inseparable from astronomical tabulation and dynastical prognostication. In later millennia, in the city states and empires of Greece, Rome, China, and India, “meteorology” became a distinct subject, with its own language and concepts, even though it remained allied to agriculture and statecraft as knowledge practices. At the beginning of the Common Era, the first distinct meteorological instruments appeared, first in East Asia and later in the Near East and Greece. In the 15th and 16th centuries, new regions were added to this knowledge infrastructure, with or without force, making it almost global: the Atlantic and Pacific Oceans, their Eurasian and African shores, and the Americas. This changed the power dynamics, with European empires controlling the transatlantic infrastructures of knowledge and labor. Ideas that were transcontinental in origin now became part of a Western European program to conquer the globe.

Article

Citizen Science and Biodiversity  

Sander Turnhout and Wessel Ganzevoort

Citizen science can be understood as an approach to scientific research in which volunteer contributors undertake work in one or more phases of the research process. Citizen science projects can be initiated by volunteers or institutional actors (e.g., scientists in academia), and volunteers often work together with professional researchers. In citizen science, participants are not just objects of research (e.g., interviewee or survey respondent) but also research subjects—that is, taking an active role in collecting data, analyzing data sets, contributing to study design, or disseminating results (or combinations of these tasks). Participants may have little background knowledge on the topic under study, or they might be amateur enthusiasts with a great deal of existing expertise. Citizen science projects aim for genuine science outcomes, which can include scientific data sets and publications, new discoveries, or policy or management action. Although citizen science projects are currently being developed and carried out in a wide variety of scientific fields, including medical biology (e.g., self-monitoring of disease symptoms), environmental science (e.g., monitoring air or water quality), history (e.g., archive transcription), and “citizen social science,” the field of biology especially has a long history of amateur involvement in research. Citizen science in this field often takes the form of collecting data on the natural world and submitting these data to biodiversity databases (e.g., reporting bird observations). In addition to collecting data, citizen scientists take up a large part of taxonomy, describing new species and rearranging, merging, and splitting species groups. Furthermore, citizen scientists are heavily involved in the verification process, checking on observations done by other citizen scientists and giving feedback, acting not only as gatekeepers toward data quality but also as authorities, educating the community. Biodiversity citizen science projects may involve monitoring of the natural world initiated by communities of natural history enthusiasts, but research institutes in the field of biology and ecology also increasingly mobilize volunteers to collect data about the natural environment. Compared to many other domains in which citizen science is being applied, biodiversity monitoring especially stands out for its long history of amateur involvement in natural history. Because initiating biodiversity citizen science projects will thus often mean that research and policy actors engage with volunteer-driven networks, understanding these networks aids effective and just design of biodiversity citizen science. Although engaging with these long-standing networks of natural history offers many opportunities, perspectives of professional ecological research and communities of practice can differ markedly. In the current state of affairs, scientific literature shows tensions between volunteers operating in their communities of practice and scientists operating in theirs. Among others, these differences involve the meaning of observations: Whereas in research these are given meaning by gathering them up and statistically analyzing the resulting data sets, within a community of practice observations predominantly reflect human–nature relationships and are shared with expectations of respectful use for the protection of nature. Not only can the meaning of observations differ but also the act of validation can refer to very different activities as well as to different aspects of quality of information. In the community of practice of observers in the field, validation plays an important role in establishing relations of trust and authority within the network, with a strong emphasis on correct observations and volunteers’ motivation for learning and belonging. Conversely, validation in the scientific practice of research concerns the structure of the monitoring protocol and the statistical demands placed on the data. For scientists and policymakers, respectful cooperation with networks of amateur biodiversity recorders requires taking their perspectives seriously and respecting their way of working and the communities they have built. It also requires citizen science organizers to think carefully about whose questions are being answered. For citizen scientists, understanding the (statistical) needs of scientists and the relevance for policy allows their network to grow through funding and training.

Article

Philosophy of the Anthropocene  

Sébastien Dutreuil and Pierre Charbonnier

The Anthropocene was proposed in 2000 as the name of a new geological epoch, succeeding to the Holocene, and marked by the influence of humanity as a biological species on its geological environment. It has resonated differently in three major epistemological domains, where the configurations of the debate has varied. For Earth system science, within which the term emerged, the Anthropocene was a keyword encompassing and stimulating large research programs which stimulated original and new scientific investigations and synthesis. The term had a more specific and evidential meaning for the geological community, which seized it after 2008. Documenting empirically the Anthropocene meant different things for these two scientific communities: tracking down every single impact humanity has on the environment on which humanity depends upon to survive for the former; analyzing how this influence can be documented in Earth’s strata for the latter. These two different epistemological regimes are intertwined with two different normative registers. Earth system science assumed from the very start a normative position: international experts elaborate normative concepts and produce scientific synthesis meant to define the conceptual space, quantitatively delimited, within which political decisions related to global environmental issues ought to be taken. By contrast, geologists were more cautious, and for some, reluctant, to engage in normative issues; but political issues unavoidably emerged when the starting date was discussed. This politicization of the debate was accompanied by human and social sciences, seizing up the debate at the same time as geologists and lay public did, toward the end of the 2000s.

Article

Environmental Humanities and Italy  

Enrico Cesaretti, Roberta Biasillo, and Damiano Benvegnú

Does something like “Italian environmental humanities” exist? If so, what makes an Italian approach to this multifaceted field of inquiry so different from the more consolidated Anglo-American tradition? At least until the early 21st century, Italian academic institutions have maintained established disciplinary boundaries and have continued to produce siloed forms of knowledge. New and more flexible forms of scholarly collaboration have also not been traditionally supported at the national level, as political decisions regarding curricular updates and funding opportunities have been unable to foster interdisciplinarity and innovative approaches to knowledge production. However, an underlying current of environmental awareness and action has a strong and long-standing presence in Italy. After all, Italy is where St. Francis wrote The Canticle of Creatures, with its non-hierarchical vision of the world, which then inspired the papal encyclical Laudato si (2015). Italy is also where Ambrogio Lorenzetti’s fresco The Allegory and the Effects of Good Government in the City and in the Country (1337–1339) already “pre-ecologically” reflected on the relationship between nature and culture, on the effect of political decisions on our surroundings, and on the impact of local environments on the well-being (as well as the malaise) of their inhabitants. Additionally, Italy is among the few countries in the world whose constitution lists specific laws aimed at protecting its landscapes, biodiversity, and ecosystems in addition to its cultural heritage, as stated in a recent addendum to articles 9 and 41. However, Italy also experienced an abrupt, violent process of development, modernization, and industrialization that radically transformed its urban, rural, and coastal territories after World War II. Many of its landscapes, once iconic and picturesque, have become polluted, toxic, or the outcome of contested, violent histories. And the effects of globalization are materially affecting its ecologies, meaning that Italy is also exposed to constant risks (earthquakes, floods, landslides, volcanic eruptions) and presents geo-morphological features that situate it at the very center of planetary climate change (both atmospheric and sociopolitical) and migration patterns. Considering this, thinking about Italy from an environmental humanities (EH) perspective and, in turn, about the EH in the context of Italy, highlights the interconnections between the local and the global and, in the process, enriches the EH debate.

Article

Air Pollution, Science, Policy, and International Negotiations  

Willemijn Tuinstra

In the course of time, the framing of the air pollution issue has undergone a transformation. It is no longer viewed as either a local health issue or a transboundary problem affecting ecosystems but as a global issue that manifests at various levels and has links to various problems. This poses a challenge for processes fostering data collection, international cooperation, and science and policy networking to deal with the issue in its various manifestations. The experience at the Air Convention, officially the Convention on Long-range Transboundary Air Pollution (CLRTAP) of the United Nations Economic Commission for Europe (UN-ECE), shows that interaction between science and policymaking at various levels of scale can enhance each other if certain conditions are met. Alignment of, for example, air policy, climate policy, nitrogen policy, health policy, and biodiversity policy not only asks for cooperation at different scales (i.e., at the local, national, regional, and global levels) but also between different arenas of decision-making and negotiation. This means that joint processes of science and policy development are needed to identify where problem formulations meet, how procedures for data collection match or which indicators are comparable, and what is possible with regard to aligning sequence and focus of policymaking. These do not necessarily need to be, or even should be, processes leading to full integration of policymaking or scientific assessment. However, successful joint processes make clear to decision-makers what the (co-)benefits of certain emission reduction measures are for various policy problems while providing a more complete picture of the cost-effectiveness of these measures. History has shown that decision-makers start acting when they can see the benefits of certain policy options or when the costs of inaction exceed those of action. Policy options might range from emission reduction measures to investments in scientific infrastructure and international cooperation. It also helps when problems are viewed as relevant by those who have the power and resources to act. Observations, measurements, and scientific assessment have the potential to point to this relevance but so does informed, critical public opinion. Current international cooperation is aimed at maintaining a network of experts and continuing efforts in capacity building in countries. Also in cities, capacity building is crucial, which is more and more supported by citizen-led air quality monitoring initiatives.

Article

Radiation and the Environment  

E. Jerry Jessee

The “Atomic Age” has long been recognized as a signal moment in modern history. In popular memory, images of mushroom clouds from atmospheric nuclear weapons tests recall a period when militaries and highly secretive atomic energy agencies poisoned the global environment and threatened human health. Historical scholarship has painted a more complicated picture of this era by showing how nuclear technologies and radioactive releases transformed the environment sciences and helped set the stage for the scientific construction of the very idea of the “global environment.” Radioactivity presented scientists with a double-edged sword almost as soon as scientists explained how certain unstable chemical elements emit energic particles and rays in the process of radioactive decay at the turn of the 20th century. Throughout the 1920s and 1930s, scientists hailed radioactivity as a transformative discovery that promised to transform atomic theory and biomedicine by using radioisotopes—radioactive versions of stable chemical elements—which were used to tag and trace physiological processes in living systems. At the same time, the perils of overexposure to radioactivity were becoming more apparent as researchers and industrial workers laboring in new radium-laced luminescent paint industries began suffering from radiation-induced illnesses. The advent of a second “Atomic Age” in wake of the bombing of Japan was characterized by increased access to radiotracer technologies for science and widespread anxiety about the health effects of radioactive fallout in the environment. Powerful new atomic agencies and military institutions created new research opportunities for scientists to study the atmospheric, oceanic, and ecological pathways through which bomb test radiation could make their way to human bodies. Although these studies were driven by concerns about health effects, the presence of energy-emitting radioactivity in the environment also meant that researchers could utilize it as a tracer to visualize basic environmental processes. Throughout the 1950s and early 1960s, as a result, ecologists pioneered the use of radiotracers to investigate energy flows and the metabolism of ecosystem units. Oceanographers similarly used bomb blast radiation to trace the physical processes in oceans and the uptake of radioactivity in aquatic food chains. Meteorologists meanwhile tracked bomb debris as high as the stratosphere to predict fallout patterns and trace large-scale atmospheric phenomenon. By the early 1960s, these studies documented how radioactive fallout produced by distant nuclear tests spread across the globe and infiltrated the entire planet’s air, water, biosphere, and human bodies. In 1963, the major nuclear powers agreed to end above-ground nuclear testing with the Limited Test Ban Treaty, the first international treaty to recognize a global environmental hazard of planetary proportions. Throughout the 1960s and into the 1980s, research on the global effects of nuclear weapons continued to shape global environmental thinking and concern as debates about nuclear winter directed professional and public attention toward humanity’s ability to alter the climate.

Article

Ecology in American Literature  

Hubert Zapf and Timo Müller

The ecological dimension of literature has found proper attention only in the late 20th century, with the rise of ecocriticism as a new direction of literary studies. Ecocriticism emerged from a revalorization of nature writing in the United States and initially understood itself as a countermovement to the linguistic turn in literary and cultural studies. Since the early 21st century, the scope of ecocritical studies has widened to include literary texts and genres across different periods and cultures. Against the background of the global environmental crisis, it has made a strong case for the contribution of literature, art, and the aesthetic to the critique of anthropocentric master narratives as well as to the imaginative exploration of sustainable alternatives to the historically deranged human–nature relationship. Ecocritical scholars have examined the ecological potential of texts in various periods and literary cultures that make up American literature. They have given particular attention to the Indigenous poetic and storytelling modes of Native Americans, the Romantic and transcendentalist movements of the mid-19th century, the aesthetic practices of modernism and postmodernism, the ethnic diversification of American literature since the late 20th century, and, most obviously, contemporary writing that explicitly defines itself as a critical and creative response to the Anthropocene. Thus, an ecological awareness in American literature emerged in different forms and stages that correspond to major periods, styles, and cultures of literary writing. While it is impossible to do justice to all relevant developments, the rich archive of ecological thought and perception in American literature can be productively brought into the transdisciplinary dialogue of the environmental sciences and humanities. The value of literary texts in relation to other forms of environmental knowledge lies not just in the topics they address but in distinctive aesthetic features, such as embodied multiperspectivity, empathetic imagination, reconnection of cultural to natural ecosystems, polysemic openness, and participatory inclusion of the reader in the transformative experience offered by the texts.