1-10 of 43 Results  for:

  • Sustainability and Solutions x
Clear all

Article

The Allocation of Groundwater: From Superstition to Science  

Burke W. Griggs

Groundwater is a critical natural resource, but the law has always struggled with it. During the 19th and early 20th centuries, the common law developed several doctrines to allocate groundwater among competing users. The groundwater revolution of the mid-20th century produced an explosive growth in pumping worldwide—and quickly exposed the flaws of these doctrines. Legal rules predicated on land and on surface waters could not meet the challenges posed by the common-pool groundwater resource: those of understanding groundwater dynamics, quantifying the impacts of pumping on other water rights, and devising satisfactory remedies. Unfettered by received property restraints, pumping on an industrial, aquifer-wide scale depleted and contaminated aquifers, regardless of doctrine. The groundwater revolution motivated significant legal developments. Starting in the 1970s, the Supreme Court of the United States adapted its methods for resolving interstate water disputes to include the effects of groundwater pumping. This jurisprudence has fundamentally influenced international groundwater law, including the negotiation of trans-boundary aquifer agreements. Advances in hydrogeology and computer groundwater modeling have enabled states and parties to evaluate the effects of basin-wide pumping. Nonetheless, difficult legal and governance problems remain. Which level of government—local, state, or national—should exercise jurisdiction over groundwater? What level of pumping qualifies as “safe yield,” especially when the aquifer is overdrawn? How do the demands of modern environmental law and the public trust doctrine affect groundwater rights? How can governments satisfy long-neglected claims to water justice made by Indigenous and minority communities? Innovations in groundwater management provide promising answers. The conjunctive management of surface and groundwater can stabilize water supplies, improve water quality, and protect ecosystems. Integrated water resources management seeks to holistically manage groundwater to achieve social and economic equity. Water markets can reward water conservation, attract new market participants, and encourage the migration of groundwater allocations to more valuable uses, including environmental uses. The modern law of groundwater allocation combines older property doctrines with 21st-century regulatory ideals, but the mixture can be unstable. In nations with long-established water codes such as the United States, common-law Anglophone nations, and various European nations, groundwater law has evolved, if haltingly, to incorporate permitting systems, environmental regulation, and water markets. Elsewhere, the challenges are extreme. Long-standing calls for groundwater reform in India remain unheeded as tens of millions of unregulated tube wells pump away. In China, chronic groundwater mismanagement and aquifer contamination belie the roseate claims of national water law. Sub-Saharan nations have enacted progressive groundwater laws, but poverty, racism, and corruption have maintained grim groundwater realities. Across the field, experts have long identified the central problems and reached a rough consensus about the most effective solutions; there is also a common commitment to secure environmental justice and protect groundwater-dependent ecosystems. The most pressing legal work thus requires building practical pathways to reach these solutions and, most importantly, to connect the public with the groundwater on which it increasingly depends.

Article

Environmental Policy and the Double Dividend Hypothesis  

Antonio M. Bento

Since the 1990s, the so-called double-dividend debate—that is, the possibility that swaps of newly environmental taxes for existing distortionary taxes such as taxes on labor or capital could simultaneously improve environmental quality and reduce the distortionary costs of tax system—has attracted the attention of policymakers and academics. And while prior to the 1990s environmental economics as a field was not ready to inform this debate, scholars quickly moved to incorporate insights of the theory of second-best from public economics to inform the discussion. The result was a substantial advancement of the field of environmental economics, with the evaluation of the welfare effects of alternative policy instruments relying on general equilibrium models with pre-existing distortions. Initially, scholars casted substantially doubt on the prospects of a double dividend, and suggested that environmental tax reforms would not reduce the distortionary costs of the tax system. This is because studies documented that the tax-interaction effect dominated the revenue-recycling effect. That is, newly environmental taxes interact with pre-existing distortions in labor markets. And even when the revenues of environmental taxes are used to cut the rate of the labor tax, the environmental tax reform exacerbates, rather than alleviate, pre-existing distortions in labor markets. Throughout the 2000s and in more recent decades, the literature has documented many instances where a double dividend is more likely to exist, including in the context of developing countries.

Article

Review of Rain and Atmospheric Water Harvesting History and Technology  

Nathan Ortiz and Sameer Rao

Water is an essential resource and is under increased strain year after year. Fresh water can be a difficult resource to come by, but the solution may lie in the invisible water source that surrounds us. The atmosphere contains 12.9 trillion m3 of fresh water in liquid and vapor forms. Rain and fog harvesting were the first solutions developed in ancient times, taking advantage of water that already existed in a liquid state. These technologies do not require energy input to overcome the enthalpy of condensation and thus are passive in nature. They are, however, limited to climates and regions that experience regular rainfall or 100% relative humidity (RH) for rainwater and fog harvesting, respectively. People living in areas outside of the usable range needed to look deeper for a solution. With the advent of refrigeration in the 20th century, techniques came that enabled access to the more elusive water vapor (i.e., <100% RH) that exists in the atmosphere. Refrigeration based dewing (RBD) is the most common technique of collecting water vapor from the atmosphere and was first developed in the 1930s but found greater adoption in the 1980s. RBD is the process of cooling ambient air to the dew point temperature. At this temperature water vapor in the atmosphere will begin to condense, forming liquid droplets. As the humidity ratio, or amount of water in a given quantity of air (gwater/kgdry-air) continues to decrease, RBD becomes infeasible. Below a threshold of about 3.5 gwater/kgdry-air the dewpoint temperature is below the freezing point and ice is formed during condensation in place of liquid water. Since the turn of the century, many researchers have made significant progress in developing a new wave of water harvesters capable of operating in much more arid climates than previously accessible with RBD. At lower humidity ratios more effort must be expended to produce the same amount of liquid water. Membrane and sorbent-based systems can be designed as passive or active; both aim to gather a high concentration of water vapor from the ambient, creating local regions of increased relative humidity. Sorbent-based systems utilize the intrinsic hydrophilicity of solid and liquid desiccants to capture and store water vapor from the atmosphere in either their pore structure (adsorbents) or in solution (absorbents). Membrane separators utilize a semipermeable membrane that allows water vapor to pass through but blocks the free passage of air, creating a region of much higher relative humidity than the environment. Technologies that concentrate water vapor must utilize an additional condensation step to produce liquid water. The advantage gained by these advancements is their ability to provide access to clean water for even the most arid climates around the globe, where the need for secure water is the greatest. Increased demand for water has led scientists and engineers to develop novel materials and climb the energy ladder, overcoming the energy requirements of atmospheric water harvesting. Many research groups around the world are working quickly to develop new technologies and more efficient water harvesters.

Article

A Review of Alternative Water Supply Systems in ASEAN  

Cecilia Tortajada, Kris Hartley, Corinne Ong, and Ojasvee Arora

Climate change, water scarcity and pollution, and growing water demand across all sectors are stressing existing water supply systems, highlighting the need for alternative water supply (AWS) systems. AWS systems are those that have not typically existed in the traditional supply portfolio of a given service area but may be used to reduce the pressure on traditional water resources and potentially improve the system’s resilience. AWS systems have been used for decades, often where traditional systems are unable to maintain sufficient quantity and quality of water supply. Simpler forms of AWS systems, like rainwater harvesting, have been used for centuries. As human population and water demand have increased, AWS systems now play a larger role in the broader supply portfolio, but these systems alone are not able to fully resolve the increasingly complex mix of problems contributing to water stress. Entrenched challenges that go beyond technical issues include low institutional capacity for developing, operating, and maintaining AWS systems; monitoring water quality; more efficiently using available resources; and establishing clear responsibilities among governments, service providers, and property owners. Like traditional water supply systems, AWS systems should be developed within a sustainability-focused framework that incorporates scenario planning to account for evolving natural and institutional conditions. In ASEAN, the adoption of AWS systems varies among countries and provides context-specific lessons for water management around the world. This article provides an overview of AWS systems in the region, including rainwater harvesting, graywater recycling, wastewater reclamation, desalination, and stormwater harvesting.

Article

Ceremonial and Subsistence Water Use  

Dale Whittington and Michael Hanemann

Water for cultural and religious purposes, referred to as ceremonial and subsistence (C&S) use, is a distinctive feature of many Indigenous and other communities. Whether this constitutes a legitimate claim for water for an American Indian Tribe in the United States was litigated in the context of a trial to determine the federal government’s obligation to reserve water for Indian Tribes whom it had settled on reservations during the 19th century. Following a U.S. Supreme Court ruling in 1963, the amount of water the federal government was obligated to provide was defined as the quantity of water that could be used to grow crops profitably on the reservation. In 2001, the Arizona Supreme Court adopted a new definition, for Arizona, namely the amount of water that ensured the reservation would be a permanent homeland. However, parts of this 2001 ruling were contradictory and seemed to support the profitable irrigation standard. What the Arizona Supreme Court actually meant was not put to the test until the Hopi water rights trial in 2020. The Hopi Tribe’s water rights claims included a claim for new water to replace diminishing local water supplies in order for the Tribe to continue cultivating traditional varietals of corn and other crops. Hopi agricultural practices date back at least a millennium and are a central part of Hopi culture and religion. The crops are used in cultural and religious ceremonies and are not sold commercially. The Hopi claim for water for irrigation to support C&S cultivation was opposed by the other parties to the case and was rejected by the court.

Article

Ecological Water Management in Cities  

Timothy Beatley

Managing water in cities presents a series of intersecting challenges. Rapid urbanization, wasteful consumption, minimal efforts at urban or ecological planning, and especially climate change have made management of urban water more difficult. Urban water management is multifaceted and interconnected: cities must at once address problems of too much water (i.e., more frequent and extreme weather events, increased riverine and coastal flooding, and rising sea levels), but also not enough water (e.g., drought and water scarcity), as well as the need to protect the quality of water and water bodies. This article presents a comprehensive and holistic picture of water planning challenges facing cities, and the historical approaches and newer methods embraced by cities with special attention to the need to consider the special effects of climate change on these multiple aspects of water and the role of ecological planning and design in responding to them. Ecological planning represents the best and most effective approach to urban water management, and ecological planning approaches hold the most promise for achieving the best overall outcomes in cities when taking into account multiple benefits (e.g., minimizing natural hazards, securing a sustainable water supply) as well as the need to protect and restore the natural environment. There are many opportunities to build on to the history of ecological planning, and ecological planning for water is growing in importance and momentum. Ecological planning for water provides the chance to profoundly rethink and readjust mankind’s relationship to water and provides the chance also to reimagine and reshape cities of the 21st century.

Article

Business Models for Sustainability  

Nancy Bocken

Human activity is increasingly impacting the environment negatively on all scales. There is an urgent need to transform human activity toward sustainable development. Business has a key role to play in this sustainability transition through technological, product and service, and process innovations, as well as innovative business models. Business models can enable new technologies, and vice versa. These models are therefore important in the transition to sustainability. Business models for sustainability, or synonymously, sustainable business models, take holistic views on how business is operated in relation to its stakeholders, including the society and the natural environment. They incorporate economic, environmental, and social aspects in an organization’s purpose and performance measures; consider the needs of all stakeholders rather than giving priority to owner and shareholder expectations; treat “nature” as a stakeholder; and take a system as well as a firm-level perspective on the way business is conducted. The research field of sustainable business models emerged from fields such as service business models, green and social business models, and concepts such as sharing and circular economy. Academics have argued that the most service-oriented business models can achieve a “factor 10” environmental impact improvement if designed the right way. Researchers have developed various conceptualizations, typologies, tools, and methods and reviews on sustainable business models. However, sustainable business models are not yet mainstream. Important research areas include the following: (a) tools, methods, and experimentation; (b) the assessment of sustainability impact and rebounds for different stakeholders; (c) sufficiency and degrowth; and (d) the twin revolution of sustainability and digital transition. First, a plethora of tools and approaches are available for inspiration and for creation of sustainable business model designs. Second, in the field of assessment, methods have been based on life cycle thinking considering the supply chain and how a product is (re)used and eventually disposed of. In the field of sufficiency, authors have recognized the importance of moderating consumption through innovative business models to reduce the total need for products, reducing the impact on the environment. Finally, researchers have started to investigate the important interplay between sustainability and digitalization. Because of the potential to achieve a factor 10 environmental impact improvement, sustainable business models are an important source of inspiration for further work, including the upscaling of sustainable business models in established businesses and in new ventures. Understanding how to design better business models and preempting their usage in practice are essential to achieve a desired positive impact. In the field of sufficiency, the macro-impacts of individual and business behavior would need to be better understood. In the area of digital innovation, environmental, societal, and economic values need scrutinization. Researchers and practitioners can leverage the popularity of this field by addressing these important areas to support the development and roll-out of sustainable business models with significantly improved economic, environmental, and societal impact.

Article

Environmental and Cultural Flows in Aotearoa and Australia  

Erin O'Donnell and Elizabeth Macpherson

In settler colonial states like Australia and Aotearoa New Zealand, water for the environment and the water rights of Indigenous Peoples often share the common experience of being too little and too late. Water pathways have been constrained and defined by settler colonialism, and as a result, settler state water law has both a legitimacy problem, in failing to acknowledge or implement the rights of Indigenous Peoples, and a sustainability problem, as the health of water systems continues to decline. In both Australia and Aotearoa New Zealand, the focus of water law has historically been to facilitate use of the water resource to support economic development, excluding the rights of Indigenous Peoples and poorly protecting water ecosystems. However, in the early 21st century, both countries made significant advances in recognizing the needs of the environment and the rights of Indigenous Peoples. In Aotearoa New Zealand, Te Tiriti o Waitangi (the Treaty of Waitangi) provides an important bicultural and bijural framework that is beginning to influence water management. In 2017, as part of a Treaty dispute settlement, Aotearoa New Zealand passed legislation to recognize Te Awa Tupua (the Whanganui River) as a legal person and created a new collaborative governance regime for the river, embedding the interests and values of Māori at the heart of river management. In Australia, water recovery processes to increase environmental flows have been under way since the 1990s, using a combination of water buybacks and water savings through increased efficiency. There has been growing awareness of Indigenous water rights in Australia, although progress to formally return water rights to Indigenous Peoples remains glacially slow. Like Aotearoa New Zealand, in 2017, Australia also passed its first legislation that recognized a river (the Birrarung/Yarra River) as a living entity and, in doing so, formally recognized the responsibilities of the Wurundjeri Woi Wurrung people as Traditional Owners of the river. This trend toward more holistic river management under a relational paradigm, in which the relationships between peoples and places are centered and celebrated, creates a genuine opportunity for water governance in settler states that begins to address both the legitimacy and sustainability flaws in settler state water law. However, these symbolic shifts must be underpinned by relationships of genuine trust between Indigenous Peoples and the state, and they require significant investment from the state in their implementation.

Article

Wastewater Reclamation and Recycling  

Soyoon Kum and Lewis S. Rowles

Across the globe, freshwater scarcity is increasing due to overuse, climate change, and population growth. Increasing water security requires sufficient water from diverse water resources. Wastewater can be used as a valuable water resource to improve water security because it is ever-present and usually available throughout the year. However, wastewater is a convoluted solution because the sources of wastewater can vary greatly (e.g., domestic sewage, agricultural runoff, waste from livestock activity, and industrial effluent). Different sources of wastewater can have vastly different pollutants, and mainly times, it is a complex mixture. Therefore, wastewater treatment, unlike drinking water treatment, requires a different treatment strategy. Various wastewater sources can be reused through wastewater reclamation and recycling, and the required water quality varies depending on the targeted purpose (e.g., groundwater recharge, potable water usage, irrigation). One potential solution is employing tailored treatment schemes to fit the purpose. Assorted physical, chemical, and biological treatment technologies have been established or developed for wastewater reclamation and recycle. The advancement of wastewater reclamation technologies has focused on the reduction of energy consumption and the targeted removal of emerging contaminants. Beyond technological challenges, context can be important to consider for reuse due to public perception and local water rights. Since the early 1990s, several global wastewater reclamation examples have overcome challenges and proved the applicability of wastewater reclamation systems. These examples showed that wastewater reclamation can be a promising solution to alleviate water shortages. As water scarcity becomes more widespread, strong global initiatives are needed to make substantial progress for water reclamation and reuse.

Article

Water User Associations and Collective Action in Irrigation and Drainage  

Bryan Bruns

If there is too little or too much water, farmers may be able to work together to control water and grow more food. Even before the rise of cities and states, people living in ancient settlements cooperated to create better growing conditions for useful plants and animals by diverting, retaining, or draining water. Local collective action by farmers continued to play a major role in managing water for agriculture, including in later times and places when rulers sometimes also organized construction of dams, dikes, and canals. Comparative research on long-lasting irrigation communities and local governance of natural resources has found immense diversity in management rules tailored to the variety of local conditions. Within this diversity, Elinor Ostrom identified shared principles of institutional design: clear social and physical boundaries; fit between rules and local conditions, including proportionality in sharing costs and benefits; user participation in modifying rules; monitoring by users or those accountable to them; graduated sanctions to enforce rules; low-cost conflict resolution; government tolerance or support for self-governance; and nested organizations. During the 19th and 20th centuries, centralized bureaucracies constructed many large irrigation schemes. Farmers were typically expected to handle local operation and maintenance and comply with centralized management. Postcolonial international development finance for irrigation and drainage systems usually flowed through national bureaucracies, strengthening top-down control of infrastructure and water management. Pilot projects in the 1970s in the Philippines and Sri Lanka inspired internationally funded efforts to promote participatory irrigation management in many countries. More ambitious reforms for transfer of irrigation management to water user associations (WUAs) drew on examples in Colombia, Mexico, Turkey, and elsewhere. These reforms have shown the feasibility in some cases of changing policies and practices to involve irrigators more closely in decisions about design, construction, and some aspects of operation and maintenance, including cooperation in scheme-level co-management. However, WUAs and associated institutional reforms are clearly not panaceas and have diverse results depending on context and on contingencies of implementation. Areas of mixed or limited impact and for potential improvement include performance in delivering water; maintaining infrastructure; mobilizing local resources; sustaining organizations after project interventions; and enhancing social inclusion and equity in terms of multiple uses of water, gender, age, ethnicity, poverty, land tenure, and other social differences. Cooperation in managing water for agriculture can contribute to coping with present and future challenges, including growing more food to meet rising demand; competition for water between agriculture, industry, cities, and the environment; increasing drought, flood, and temperatures due to climate change; social and economic shifts in rural areas, including outmigration and diversification of livelihoods; and the pursuit of environmental sustainability.