41-60 of 73 Results  for:

  • Management and Planning x
Clear all

Article

Multi-Objective Robust Planning Tools  

Jazmin Zatarain Salazar, Andrea Castelletti, and Matteo Giuliani

Shared water resource systems spark a number of conflicts related to their multi sectorial, regional, and intergenerational use. They are also vulnerable to a myriad of uncertainties stemming from changes in the hydrology, population demands, and climate change. Planning and management under these conditions are extremely challenging. Fortunately, our capability to approach these problems has evolved dramatically over the last few decades. Increased computational power enables the testing of multiple hypotheses and expedites the results across a range of planning alternatives. Advances in flexible multi-objective optimization tools facilitate the analyses of many competing interests. Further, major shifts in the way uncertainties are treated allow analysts to characterize candidate planning alternatives by their ability to fail or succeed instead of relying on fallible predictions. Embracing the fact that there are indeterminate uncertainties whose probabilistic descriptions are unknown, and acknowledging relationships whose actions and outcomes are not well-characterized in planning problems, have improved our ability to perform diligent analysis. Multi-objective robust planning of water systems emerged in response to the need to support planning and management decisions that are better prepared for unforeseen future conditions and that can be adapted to changes in assumptions. A suite of robustness frameworks has emerged to address planning and management problems in conditions of deep uncertainty. That is, events not readily identified or that we know so little about that their likelihood of occurrence cannot be described. Lingering differences remain within existing frameworks. These differences are manifested in the way in which alternative plans are specified, the views about how the future will unfold, and how the fitness of candidate planning strategies is assessed. Differences in the experimental design can yield diverging conclusions about the robustness and vulnerabilities of a system. Nonetheless, the means to ask a suite of questions and perform a more ambitious analysis is available in the early 21st century. Future challenges will entail untangling different conceptions about uncertainty, defining what aspects of the system are important and to whom, and how these values and assumptions will change over time.

Article

National Parks in Developed Countries  

Leslie Richardson and Bruce Peacock

Economics plays an important role not only in the management of national parks in developed countries, but also in demonstrating the contribution of these areas to societal well-being. The beneficial effect of park tourism on jobs and economic activity in communities near these protected areas has at times been a factor in their establishment. These economic impacts continue to be highlighted as a way to demonstrate the benefit and return on investment of national parks to local economies. However, the economic values supported by national parks extend far beyond local economic benefits. Parks provide unique recreation opportunities, health benefits, preservation of wildlife and habitat, and a wide range of ecosystem services that the public assigns an economic value to. In addition, value is derived from the existence of national parks and their preservation for future generations. These nonmarket benefits can be difficult to quantify, but they are essential for understanding and communicating the economic importance of parks. Economic methods used to estimate these values have been refined and tested for nearly seven decades, and they have come a long way in helping to elucidate the extent of the nonmarket benefits of protected areas. In many developed countries, national parks have regulations and policies that outline a framework for the consideration of economic values in decision-making contexts. For instance, large oil spills in the United States, such as the Exxon Valdez spill of 1989 and the Deepwater Horizon spill of 2010, highlighted the need to better understand public values for affected park resources, leading to the extensive use of nonmarket values in natural resource damage assessments. Of course, rules and enforcement issues vary widely across countries, and the potential for economics to inform the day-to-day operations of national parks is much broader than what is currently outlined in such policies. While economics is only one piece of the puzzle in managing national parks, it provides a valuable tool for evaluating resource tradeoffs and for incorporating public preferences into the decision-making process, leading to greater transparency and assurance that national parks are managed for the benefit of society. Understanding the full extent of the economic benefits supported by national parks helps to further the mission of these protected areas in developed countries.

Article

Optimal and Real-Time Control of Water Infrastructures  

Ronald van Nooijen, Demetris Koutsoyiannis, and Alla Kolechkina

Humanity has been modifying the natural water cycle by building large-scale water infrastructure for millennia. For most of that time, the principles of hydraulics and control theory were only imperfectly known. Moreover, the feedback from the artificial system to the natural system was not taken into account, either because it was too small to notice or took too long to appear. In the 21st century, humanity is all too aware of the effects of our adaptation of the environment to our needs on the planetary system as a whole. It is necessary to see the environment, both natural and hman-made as one integrated system. Moreover, due to the legacy of the past, the behaviour of the man-madeparts of this system needs to be adapted in a way that leads to a sustainable ecosystem. The water cycle plays a central role in that ecosystem. It is therefore essential that the behaviour of existing and planned water infrastructure fits into the natural system and contributes to its well-being. At the same time, it must serve the purpose for which it was constructed. As there are no natural feedbacks to govern its behaviour, it will be necessary to create such feedbacks, possibly in the form of real-time control systems. To do so, it would be beneficial if all persons involved in the decision process that establishes the desired system behaviour understand the basics of control systems in general and their application to different water systems in particular. This article contains a discussion of the prerequisites for and early development of automatic control of water systems, an introduction to the basics of control theory with examples, a short description of optimal control theory in general, a discussion of model predictive control in water resource management, an overview of key aspects of automatic control in water resource management, and different types of applications. Finally, some challenges faced by practitioners are mentioned.

Article

Planning for Resilient and Sustainable Coastal Shorelands and Communities in the Face of Global Climate Change  

Richard K. Norton

Coastal shorelands and communities are among the most beautiful, vital, remunerative, popular, inequitable, and hazardous of places to live, work, and play. Because of the varied and intensive uses of them combined with climate-related impacts to them, they increasingly experience threats from coastal hazards, suffer ecological degradation, and engender contentious conflicts. Although some coastal shorelands are publicly owned, many are privately owned. Coastal states and communities confront many challenges as they plan for and manage the use of privately owned coastal shorelands. Coastal shorelands encompass the near-shore beaches, dunes, wetlands, and other transitional areas within dynamic coastal zones, whether developed or natural. Sustainability suggests the ability of natural and social coastal systems to persist, whereas resilience speaks to the sustainability of those systems when subject to substantial disruptions such as flooding from extreme storms. In addition to promoting sustainable and resilient coastal shorelands in general, advocates also call for redressing the heightened risks and other inequities experienced by historically marginalized communities. Most of the challenges prompting calls for enhanced coastal resilience, sustainability, and equity are not unique to coastal settings, but coastal communities especially need to attend to them given the heightened risks and development pressures they face. Broadly, they include increasingly frequent and fierce storms, floods, drought, fires, and heatwaves. Coastal communities also face unique challenges, including accelerating rates of shoreline recession and increasing near-shore flooding. Further complicating these natural dynamics are complex and poorly adapted property right, public interest, and related legal/administrative institutional arrangements shaping both private and public expectations in coastal settings. Community planning, if well executed, offers the promise of facilitating and advancing the kinds of nuanced and adaptive resiliency and sustainability goals needed everywhere, especially in coastal settings. Toward that end, researchers and advocates promote a range of planning principles, such as recognizing that coastal economies are nested within and dependent upon coastal ecosystems; promoting culturally aware, place-based, and infrastructure-efficient development policies; adopting no- to low-regrets climate adaptation policies; and encouraging ongoing learning and adaptative management. They similarly promote a variety of planning methods to support those policies, such as land suitability, infrastructure capacity, hazard vulnerability, and social vulnerability analyses, best engaged through scenario-based planning given climate-related uncertainties. Coastal communities experiencing aggressive shoreline recession face difficult choices as well—such as whether to armor receding shores or withdraw—most of which will require acknowledging and working through unavoidable trade-offs. Finally, providing knowledge about natural coastal dynamics and management systems is necessary but not by itself sufficient. Also needed are enhanced local capacity to conduct the analyses required to identify policies and programs that will effectively and equitably advance coastal sustainability and the firm commitment of local residents and officials to adopt those policies—challenges that are daunting but not insurmountable.

Article

Policy Analysis and Investment Appraisal in the Water Sector  

Edoardo Borgomeo

Since the earliest forms of human settlement, water resources have shaped societies and have been integral to their proper functioning. In developing—and maintaining—their relationship with water, societies have relied on myriad approaches to appraise options to manage water, that is, identifying expectations and objectives related to water and choosing the course of action to achieve them. This article describes some methodological issues of conventional approaches for policy analysis and investment appraisal in the water sector and then charts a way forward to further strengthen them to achieve water security in the Anthropocene. Despite their clear benefits to society, demonstrated by extensive application to address water-related challenges around the world, conventional approaches to appraising policy options and investments suffer from some limitations. First, appraisal typically focuses on inputs and outputs, not paying enough attention to the outcomes and services that societies expect to obtain from water-related development. Second, appraisal methods still largely consider water as a plentiful resource, paying little attention to its opportunity cost and its multiple values to different users, including ecosystems. Third, most appraisals still ignore behavioural responses and societal dynamics arising from water-related policies and investments. A fourth limitation relates to the deterministic nature of appraisal that fails to properly account for uncertainties and interdependencies. Finally, appraisal still largely focuses on individual projects rather than portfolios of options, largely privileging technological fixes to respond to narrowly defined water-related challenges. Methodological advances in the appraisal of policy options and investments provide a significant opportunity to overcome these limitations and build a more robust and inclusive platform to plan for water security. While further refinements are required, particularly to achieve deeper and more formal integration across disciplines, attention needs to focus on application and uptake of these methodological advances to address urgent water security challenges.

Article

Politics of Water Flows: Water Supply, Sanitation, and Drainage  

Tatiana Acevedo Guerrero

Since the late 20th century, water and sanitation management has been deeply influenced by ideas from economics, specifically by the doctrine of neoliberalism. The resulting set of policy trends are usually referred to as market environmentalism, which in broad terms encourages specific types of water reforms aiming to employ markets as allocation mechanisms, establish private-property rights and full-cost pricing, reduce (or remove) subsidies, and promote private sector management to reduce government interference and avoid the politicization of water and sanitation management. Market environmentalism sees water as a resource that should be efficiently managed through economic reforms. Instead of seeing water as an external resource to be managed, alternative approaches like political ecology see water as a socio-nature. This means that water is studied as a historical-geographical process in which society and nature are inseparable, mutually produced, and transformable. Political ecological analyses understand processes of environmental change as deeply interrelated to socioeconomic dynamics. They also emphasize the impact of environmental dynamics on social relations and take seriously the question of how the physical properties of water may be sources of unpredictability, unruliness, and resistance from human intentions. As an alternative to the hydrologic cycle, political ecology proposes the concept of hydrosocial cycle, which emphasizes that water is deeply political and social. An analysis of the politics of water flows, drawing from political ecology explores the different relationships and histories reflected in access to (and exclusion from) water supply, sanitation, and drainage. It portrays how power inequalities are at the heart of differentiated levels of access to infrastructure.

Article

Recreation Use Values for Water-Based Recreation  

John Loomis and Lucas Bair

Outdoor recreation is an important and growing activity worldwide. Water-based outdoor recreation is a subset that includes various activities such as fishing, boating, and swimming. While a large portion of water-based recreation is either free or provided at administratively set minimal entrance fees, these activities still involve significant economic value in aggregate. Because many water-based recreation activities do not have market prices, economists have developed nonmarket valuation methods to estimate the full scope of economic values to participants associated with these activities. Estimates of the economic value of water-based recreation are important in water resource management. While water resource infrastructure investment decisions typically include the economic value of recreation, periodic evaluation of infrastructure operations after construction may not. Re-evaluation of operations is particularly important if rapid changes in future conditions such as drought or changes in recreational demand occur. Because developing original site-based estimates of economic value requires significant effort, it is important to understand the general economic value of specific water-based recreational activities and methods used to transfer benefit estimates from existing studies to other sites.

Article

Rethinking Conflict over Water  

Scott M. Moore

It has long been accepted that non-renewable natural resources like oil and gas are often the subject of conflict between both nation-states and social groups. But since the end of the Cold War, the idea that renewable resources like water and timber might also be a cause of conflict has steadily gained credence. This is particularly true in the case of water: in the early 1990s, a senior World Bank official famously predicted that “the wars of the next century will be fought over water,” while two years ago Indian strategist Brahma Chellaney made a splash in North America by claiming that water would be “Asia’s New Battleground.” But it has not quite turned out that way. The world has, so far, avoided inter-state conflict over water in the 21st century, but it has witnessed many localized conflicts, some involving considerable violence. As population growth, economic development, and climate change place growing strains on the world’s fresh water supplies, the relationship between resource scarcity, institutions, and conflict has become a topic of vocal debate among social and environmental scientists. The idea that water scarcity leads to conflict is rooted in three common assertions. The first of these arguments is that, around the world, once-plentiful renewable resources like fresh water, timber, and even soils are under increasing pressure, and are therefore likely to stoke conflict among increasing numbers of people who seek to utilize dwindling supplies. A second, and often corollary, argument holds that water’s unique value to human life and well-being—namely that there are no substitutes for water, as there are for most other critical natural resources—makes it uniquely conductive to conflict. Finally, a third presumption behind the water wars hypothesis stems from the fact that many water bodies, and nearly all large river basins, are shared between multiple countries. When an upstream country can harm its downstream neighbor by diverting or controlling flows of water, the argument goes, conflict is likely to ensue. But each of these assertions depends on making assumptions about how people react to water scarcity, the means they have at their disposal to adapt to it, and the circumstances under which they are apt to cooperate rather than to engage in conflict. Untangling these complex relationships promises a more refined understanding of whether and how water scarcity might lead to conflict in the 21st century—and how cooperation can be encouraged instead.

Article

Rethinking Water Markets  

Rupert Quentin Grafton, James Horne, and Sarah A. Wheeler

Global water extractions from streams, rivers, lakes, and aquifers are continuously increasing, yet some four billion people already face severe water scarcity for at least one month per year. Deteriorating water security will, in the absence in how water is governed, get worse with climate change, as modeling projections indicate that much of the world’s arid and semiarid locations will receive less rainfall into the future. Concomitant with climate change is a growing world population, expected to be about 10 billion by 2050, that will greatly increase the global food demand, but this demand cannot be met without increased food production that depends on an adequate supply of water for agriculture. This poses a global challenge: How to ensure immediate and priority needs (such as safe drinking water) are satisfied without compromising future water security and the long-term sustainability of freshwater ecosystems? An effective and sustainable response must resolve the “who gets what water and when” water allocation problem and promote water justice. Many decision makers, however, act as if gross inequities in water access can be managed by “business as usual” and upgrades in water infrastructure alone. But much more is needed if the world is to achieve its Sustainable Development Goal of “water and sanitation for all” by 2030. Transformational change is required such that the price paid for water by users includes the economic costs of supply and use and the multiple values of water. Water markets in relation to physical volumes of water offer one approach, among others, that can potentially deliver transformational change by: (a) providing economic incentives to promote water conservation and (b) allowing water to be voluntarily transferred among competing users and uses (including non-uses for the environment and uses that support cultural values) to increase the total economic value from water. Realizing the full potential of water markets, however, is a challenge, and formal water markets require adequate regulatory oversight. Such oversight, at a minimum, must ensure: (a) the metering, monitoring, and compliance of water users and catchment-scale water auditing; (b) active compliance to protect both buyers and sellers from market manipulations; and (c) a judiciary system that supports the regulatory rules and punishes noncompliance. In many countries, the institutional and water governance framework is not yet sufficiently developed for water markets. In some countries, such as Australia, China, Spain, and the United States, the conditions do exist for successful water markets, but ongoing improvements are still needed as circumstances change in relation to water users and uses, institutions, and the environment. Importantly, into the future, water markets must be designed and redesigned to promote both water security and water justice. Without a paradigm shift in how water is governed, and that includes rethinking water markets to support efficiency and equitable access, billions of people will face increasing risks to their livelihoods and lives and many fresh-water environments will face the risk of catastrophic decline.

Article

Review of the State of the Art in Analysis of the Economics of Water Resources Infrastructure  

Marc Jeuland

Water resources represent an essential input to most human activities, but harnessing them requires significant infrastructure. Such water control allows populations to cope with stochastic water availability, preserving uses during droughts while protecting against the ravages of floods. Economic analysis is particularly valuable for helping to guide infrastructure investment choices, and for comparing the relative value of so called hard and soft (noninfrastructure) approaches to water management. The historical evolution of the tools for conducting such economic analysis is considered. Given the multimillennial history of human reliance on water infrastructure, it may be surprising that economic assessments of its value are a relatively recent development. Owing to the need to justify the rapid deployment of major public-sector financing outlays for water infrastructure in the early 20th century, government agencies in the United States—the Army Corps of Engineers and the Bureau of Reclamation—were early pioneers in developing these applications. Their work faced numerous technical challenges, first addressed in the drafting of the cost-benefit norms of the “Green Book.” Subsequent methodological innovation then worked to address a suite of challenges related to nonmarket uses of water, stochastic hydrology, water systems interdependencies, the social opportunity cost of capital, and impacts on secondary markets, as well as endogenous sociocultural feedbacks. The improved methods that have emerged have now been applied extensively around the world, with applications increasingly focused on the Global South where the best infrastructure development opportunities remain today. The dominant tools for carrying out such economic analyses are simulation or optimization hydroeconomic models (HEM), but there are also other options: economy wide water-economy models (WEMs), sociohydrological models (SHMs), spreadsheet-based partial equilibrium cost-benefit models, and others. Each of these has different strengths and weaknesses. Notable innovations are also discussed. For HEMs, these include stochastic, fuzz, and robust optimization, respectively, as well as co-integration with models of other sectors (e.g., energy systems models). Recent cutting-edge work with WEMs and spreadsheet-based CBA models, meanwhile, has focused on linking these tools with spatially resolved HEMs. SHMs have only seen limited application to infrastructure valuation problems but have been useful for illuminating the paradox of flood management infrastructure increasing the incidence and severity of flood damages, and for explaining the co-evolution of water-based development and environmental concerns, which ironically then devalues the original infrastructure. Other notable innovations are apparent in multicriteria decision analysis, and in game-theoretic modeling of noncooperative water institutions. These advances notwithstanding, several issues continue to challenge accurate and helpful economic appraisal of water infrastructure and should be the subject of future investigations in this domain. These include better assessment of environmental and distributional impacts, incorporation of empirically based representations of costs and benefits, and greater attention to the opportunity costs of infrastructure. Existing tools are well evolved from those of a few decades ago, supported by enhancements in scientific understanding and computational power. Yet, they do appear to systematically produce inflated estimations of the net benefits of water infrastructure. Tackling existing shortcomings will require continued interdisciplinary collaboration between economists and scholars from other disciplines, to allow leveraging of new theoretical insights, empirical data analyses, and modeling innovations.

Article

Sea Level Rise and Coastal Management  

James B. London

Coastal zone management (CZM) has evolved since the enactment of the U.S. Coastal Zone Management Act of 1972, which was the first comprehensive program of its type. The newer iteration of Integrated Coastal Zone Management (ICZM), as applied to the European Union (2000, 2002), establishes priorities and a comprehensive strategy framework. While coastal management was established in large part to address issues of both development and resource protection in the coastal zone, conditions have changed. Accelerated rates of sea level rise (SLR) as well as continued rapid development along the coasts have increased vulnerability. The article examines changing conditions over time and the role of CZM and ICZM in addressing increased climate related vulnerabilities along the coast. The article argues that effective adaptation strategies will require a sound information base and an institutional framework that appropriately addresses the risk of development in the coastal zone. The information base has improved through recent advances in technology and geospatial data quality. Critical for decision-makers will be sound information to identify vulnerabilities, formulate options, and assess the viability of a set of adaptation alternatives. The institutional framework must include the political will to act decisively and send the right signals to encourage responsible development patterns. At the same time, as communities are likely to bear higher costs for adaptation, it is important that they are given appropriate tools to effectively weigh alternatives, including the cost avoidance associated with corrective action. Adaptation strategies must be pro-active and anticipatory. Failure to act strategically will be fiscally irresponsible.

Article

Smart Cities and Water Infrastructure  

Katherine Lieberknecht

Water infrastructure is the system of physical (both built and environmental), social (e.g., governance), and technological elements that move water into, throughout, and out of human communities. It includes, but is not limited to, water supply infrastructure (e.g., pipe systems, water treatment facilities), drainage and flood infrastructure (e.g., storm sewers, green infrastructure systems, levees), and wastewater treatment infrastructure (e.g., pipe systems, wastewater treatment plants, reclaimed water facilities). Smart city approaches to water infrastructure emphasize integration of information and communication technologies with urban water infrastructure and services, usually with the goal of increasing efficiency and human well-being. Smart water meters, smart water grids, and other water-related information and communication technologies have the potential to improve overall infrastructure efficiency, to reduce water use, to match new water supplies with appropriate water uses, to innovate wastewater treatment, and to protect residents from floods and other water-related climate events. However, without stronger attention to issues of equity, social systems, governance, ecology, and place, a smart city approach to water infrastructure may achieve efficiencies but fail to generate broader socioecological values or to contribute toward climate adaptation.

Article

Smart One Water: An Integrated Approach for the Next Generation of Sustainable and Resilient Water Systems  

Sunil K. Sinha, Meghna Babbar-Sebens, David Dzombak, Paolo Gardoni, Bevlee Watford, Glenda Scales, Neil Grigg, Edgar Westerhof, Kenneth Thompson, and Melissa Meeker

Quality of life for all people and communities is directly linked to the availability of clean and abundant water. Natural and built water systems are threatened by crumbling infrastructure, floods, drought, storms, wildfires, sea-level rise, population growth, cybersecurity breaches, and pollution, often in combination. Marginalized communities feel the worst impacts, and responses are hampered by fragmented and antiquated governance and management practices. A standing grand challenge for the water sector is transitioning society to a future where current silos are transformed into a significantly more efficient, effective, and equitable One Water system-of-systems paradigm—in other words, a future where communities are able to integrate the governance and management of natural and engineered water systems at all scales of decision-making in a river basin. Innovation in digital technologies that connect data, people, and organizations can be game changers in addressing this societal grand challenge. It is envisioned that advancing digital capabilities in the water sector will require a Smart One Water approach, one that builds upon new technologies and research advancements in multiple disciplines, including those in engineering, computer science, and social science. However, several fundamental knowledge gaps at the nexus of physical, social, and cyber sciences currently exist on how a nationwide Smart One Water approach can be created, operationalized, and maintained. Convergent research is needed to investigate these gaps and improve our current understanding of Smart One Water approaches, including the costs, risks, and benefits to diverse communities in the rural-to-urban continuum. At its core, implementing the Smart One Water approach requires a science-based, stakeholder-driven, and artificial intelligence (AI)–enabled cyberinfrastructure platform, one that can provide a robust framework to support networks of river-basin collaborations. We refer to this envisioned cyberinfrastructure foundation as the digital research and operational platform (DROP). DROP is envisioned to exploit advances in data analytics, machine learning, information, communication, and decision support technologies for the management of One Water systems via AI-enabled digital twins of river-basin systems. Deploying DROP at a large-basin scale requires an understanding of (a) physical water systems (natural and engineered) at the basin scale, which interact with each other in a dynamic environment affected by climate change and other societal trends and whose data, functions, and processes must be integrated to create digital twins of river basins; (b) the social aspects of One Water systems by understanding the values and perspectives of stakeholders, costs and benefits of water management practices and decisions, and the specific needs of disadvantaged populations in river basin communities; (c) approaches for developing and deploying the digital technologies, analytics, and AI required to efficiently operate and manage Smart One Water systems in small to large communities; (d) strategies for training and advancing the next-generation workforce who have expertise on cyber, physical, and social aspects of One Water systems; and (e) lessons learned from testing and evaluating DROP in diverse testbeds. The article describes a strategic plan for operationalizing Smart One Water management and governance in the United States. The plan is based on five foundational pillars: (a) river-basin scale governance, (b) workforce development, (c) innovation ecosystem, (d) diversity and inclusion, and (e) stakeholder engagement. Workshops were conducted for each foundational pillar among diverse stakeholders representing federal, state, and local governments; utilities; industry; nongovernmental organizations; academics; and the general public. The workshops confirmed the strong desire of water communities to embrace, integrate, and grow the Smart One Water approach. Recommendations were generated for using the foundational pillars to guide strategic plans to implement a national-scale Smart One Water program and facilitate its adoption by communities in the United States, with global applications to follow.

Article

Social Equity, Land Use Planning, and Flood Mitigation  

Malini Roy and Philip Berke

Every flood event reveals hidden disparities within cities—disparities in capacities to anticipate, respond to, and recover from disasters. Studies examining drivers of disparity have found that highly socially vulnerable (e.g., poor, minority) neighborhoods sustain more damage, have access to fewer recovery resources, and experience slower recovery. Climate change and unregulated growth are likely to exacerbate these disparities. Scholars argue that disparities along the lines of race and income are partly due to inadequate planning. Planning for flood mitigation has lacked a deep understanding of values and has therefore overlooked needs and exacerbated physical vulnerability in socially vulnerable neighborhoods. Increasing local and international attention to the socioeconomic drivers of disaster impacts elicits the question: How can land use planning foster more equitable hazard mitigation practices that meet the needs identified by marginalized communities? Equitable hazard mitigation is advanced through three dimensions. First, contextual equity involves preparing an information base that asks who is vulnerable to flooding, who has (not) been engaged in planning decisions that affect vulnerability to flooding, and why. Recognizing contextual inequities in plans is the first step to making visible historic discrimination and addressing drivers of persisting political disenfranchisement. Second, procedural equity involves organizing a participation process that critically considers whom participation processes should target, how stakeholders should be inclusively engaged, and how multiple values should inform policy priorities. Dedicated planning-participation processes can repair past legacies of power information imbalances and co-produce planning goals. A process where vulnerable, marginalized citizens have as much information and as much say in policy decisions as others adds nuance to planners’ understanding of needs, and enables the incorporation of overlooked values into distribution of land use policies. Third, distributional equity involves designing planning policies so that flood mitigation services and infrastructure are directed to neighborhoods and households most in need. Moreover, distributional equity considerations need to be integrated across the local government plans (e.g., transportation plan, housing plan, and hazard mitigation plan) that affect growth in hazardous areas. Social equity outcomes further rely on the degree of knowledge transfer between the three dimensions. The effectiveness of distributional equity is critically dependent on contextual and procedural equity and affects how plan outcomes align with the needs and values of disadvantaged and vulnerable communities. Likewise, the scope of contextual equity is shaped by historical distributional and procedural equity or lack thereof. To advance equitable outcomes, more research is required on the implementation and effectiveness of different land use planning approaches. Future inquiries should examine social equity through a multihazard lens; empirically analyze the causal relationships among the contextual, procedural, and distributional equity; and explore the effectiveness of different planning tools and governance structures in fostering socially equitable hazard mitigation.

Article

Stormwater Management and Roadways  

Nigel Pickering and Somayeh Nassiri

Nonpoint source pollution is common in highly developed areas worldwide, degrading downstream water quality conditions and causing algal growth, aquatic toxicity, and sometimes fish kills. Stormwater runoff that results from rainfall or snowmelt events creates high-flow runoff from impervious surfaces and adjacent areas transporting multiple pollutants to the receiving waters. Although water quality regulations in the developed world have been effective in cleaning up wastewater discharges, their success with remediating stormwater discharges has not been consistent. An exploration of the sources, characteristics, and treatment of roadway runoff, a type of runoff that can be toxic and more difficult to manage because of the linear nature of the road network, is necessary. Since 1975, there have been more than 50 major roadway studies quantifying the sources and types of runoff contaminants like sediment, metals, inorganic salts, and organic compounds. Vehicle sources of pollutants are considered the most pernicious of all roadway contaminants, with brakes and tires being major sources. In the last decade, the leachate from tire wear particles has been linked to toxicity in coho salmon. Nonstructural stormwater management minimizes contamination by using source controls; for example, the elimination of almost all lead in automotive fuel has reduced roadway lead contamination significantly and the introduction of low-copper brake pads in the United States is expected to reduce roadway copper contamination over time. Structural stormwater management practices treat contaminated roadway runoff using small natural treatment systems; this is due in large part to the linear nature of roadways that makes larger regional systems more difficult. Since 2000, treatment performance has improved; however, there is still a great need for further improvement. Suggestions for treatment improvements include designing with low maintenance in mind; applying machine learning to the existing data; improving the understanding of road-land pollutant dynamics; using a transdisciplinary applied research approach to identify the means to improve treatment and reduce toxicity; improving the media used in treatment systems to enhance performance; improving structural strength of permeable pavement; and increasing implementation by facilitating ways to allow/encourage small, effective, and less costly alternatives.

Article

Stormwater Management at the Lot Level: Engaging Homeowners and Business Owners to Adopt Green Stormwater Infrastructure  

Anand D. Jayakaran, Emily Rhodes, and Jason Vogel

The Clean Water Act of 1972 was the impetus for stormwater management in the United States, followed by the need for many cities to comply with consent decrees associated with combined sewer overflows. With rapidly growing urban centers and the attendant increasing costs of managing stormwater with larger stormwater facilities, green stormwater infrastructure (GSI) was deemed a useful measure to distribute the management of stormwater across the landscape. The management of stormwater has evolved from simply removing it as quickly as it is generated in order to prevent flooding, to intentionally detaining stormwater on the landscape. Typically, low-frequency large events are detained in central stormwater holding facilities, while GSI is employed to manage smaller high-frequency events, slowing and treating stormwater on the landscape itself. Installing GSI close to the source of runoff production ensures that stormwater directed towards these facilities are small enough in volume, so as not to overwhelm these systems. Within these GSI systems, the natural assimilative capacity of soils and plants slows and breaks down many of the pollutants that are found in stormwater runoff. The requirement for a broad spatial distribution of GSI across the landscape necessitates an acceptance of these technologies, and the willingness of the managers of these urban landscapes to maintain these systems on a continual basis. The policies put in place to transfer the responsibility of stormwater management onto individual lot owners range from regulations imposed on those that develop the landscape for commercial and industrial purposes, to incentives offered to individual lot owners to install GSI practices for the first time on their properties. GSI is, however, not a silver bullet for all stormwater ills, and care has to be taken in how it is deployed in order not to exacerbate systemic environmental and racial inequities. A careful and considered adoption of GSI that includes the desires, values, and the needs of the community in conjunction with the environmental goals they are designed to address is critical.

Article

Sustainable Management of Groundwater  

Stephen Foster and John Chilton

This chapter first provides a concise account of the basic principles and concepts underlying scientific groundwater management, and it then both summarises the policy approach to developing an adaptive scheme of management and protection for groundwater resources that is appropriately integrated across relevant sectors and assesses the governance needs, roles and planning requirements to implement the selected policy approach.

Article

The Basic Systems of Surface Water Allocation  

Joseph W. Dellapenna

From earliest times, at least in arid and semi-arid regions, law has been used to allocate water to particular users, at particular locations, and for particular uses, as well as to regulate the uses of water. In the early 21st century, such laws are found everywhere in the world. While the details of such systems of water law are specific to each culture, these systems, in general terms, conform to one of three basic patterns, or to some combination thereof. The three patterns can be understood as a system of common property, a system of private property, or a system of public property. In a common property system, each person is free to use water as he or she chooses so long as the person has lawful access to the water source and does not unreasonably interfere with other lawful users. Such systems were common in humid regions where generally there was enough water available for all uses, but these break down when demand begins to outstrip supply frequently. Private property systems, more common in arid and semi-arid regions, where water is generally not available to meet all demand on the water sources, is a system that allocates specific amounts of water from an identified water source, for a particular water use at a particular location, and with a definite priority relative to other uses. The problem with such private property systems is their rigidity, with transfers of existing water allocations to new uses or new locations proving difficult in practice. In Australia, the specified claim on a water source is defined not as a quantity, but as a percentage of the available flow. Despite the praise heaped upon this system, it has proven difficult to implement without heavy government intervention, benefiting only large irrigators without adequately addressing the public values that water sources must serve. In part, the problems arise because cheating is easier in the absence of clear volumetric entitlements. The public property systems, which has roots dating back centuries but is largely an artifact of the 20th century, treats water as subject to active public management, whether through collaborative decision-making by stakeholders (a situation that is also sometimes called “common property” but is actually very different from the concept of common property used here), or through governmental institutions. Public property systems seek to avoid the deficiencies of the other two systems (particularly by avoiding the incessant conflicts characteristic of common property systems as demand approaches supply and the rigidity characteristics of actual private property systems), but at the cost of introducing bureaucratized decision making. In the late 20th century, many stakeholders, governments, and international institutions turned to market systems—usually linked to a revived or new private property system—as the supposed optimum means to allocate and re-allocate water to particular uses, users, and locations. Before the late 20th century, markets were rare and small, but institutions like the World Bank set about to make them the primary mechanism for water allocation. Markets, however, proved difficult to implement, at least without transferring wealth from relatively poor users to more prosperous users, and therefore produced a backlash in the form of support for a human right to water that would trump the private property claims central to water markets. The protection of public values, such as ecological or navigational flows, also proved difficult to maintain in the face of the demands of the marketplace. Each of these systems has proven useful in particular settings, but none of them can be universally applied.

Article

The Problem of Water Markets  

Michael Hanemann

Water marketing and property right reform are intertwined. Water markets are advocated as a solution for water scarcity, but changes in water rights are often required if the scope of water marketing is to expand. This is true in many countries, including (but not limited to) the United States and Australia. The focus here is on the United States. So far, water marketing in the Western United States is not producing long-run reallocation on the scale expected. The chief impediment is the complexities in existing water rights. An important distinction is between a property right to extract water and put it to use versus a contractual right to receive water from a supply organization. In the United States, the property right to water is a unique form of property. Unlike land, it is a right of use, not ownership; the quantity afforded by the right is incompletely specified; and the ability to transfer it is constrained by the obligation to avoid harm through the externality of return flows and also by unreliable historical records of rights. These constraints are often relaxed for short-term transfers (leases) of a property right lasting only a year or two. Also, these constraints generally do not apply to a contract right to receive water. Thus, most of the surface water transferred in the United States is either contract water moving within supply system boundaries or short-term leases of appropriative rights. These transfers tend to provide short-run flexibility for water users rather than long-run reallocation. For more significant long-run reallocation of water, some modification of the property right to water is essential. Devising a politically acceptable way to make the needed changes is the ultimate constraint on water marketing.

Article

Transboundary Water Governance and Small Basin Councils in Central Asia  

Stefanos Xenarios, Murat Yakubov, Aziza Baubekova, Olzhas Alshagirov, Zhassulan Zhalgas, and Eduardo Jr Araral

Central Asia (CA) hosts some of the world’s most complex and most extensive water management infrastructures allocated in the two major transboundary basins of the Amudarya and Syrdarya Rivers. The upstream countries of Tajikistan and Kyrgyzstan mainly utilize the rivers for hydropower and irrigation, whereas the downstream countries of Uzbekistan, Turkmenistan, and Kazakhstan primarily use them for irrigation purposes. The governance of the two river basins has been contested since Soviet times, and more so after the independence of the CA countries. The scheme of Small Basin Councils (SBCs) has been introduced in the region from 2010 to 2022 to improve local and transboundary water governance at a sub-basin and catchment level. Implementing SBCs in CA is still in the experimental phase, and its contribution to river basin management is insufficiently explored. However, there are indications that SBCs play a significant role in raising awareness of and engagement with local communities and improving local and transboundary governance management and coordination. Most important, SBCs can help resolve critical issues in agricultural water allocation, one of the most contentious issues for transboundary water governance in CA. The basin councils could become significant leverage for improving water governance on national and transboundary systems in CA by actively engaging local communities in management, planning, and administration.