81-100 of 215 Results

Article

Geologists’ reframing of the global changes arising from human impacts can be used to consider how the insights from environmental economics inform policy under this new perspective. They ask a rhetorical question. How would a future generation looking back at the records in the sediments and ice cores from today’s activities judge mankind’s impact? They conclude that the globe has entered a new epoch, the Anthropocene. Now mankind is the driving force altering the Earth’s natural systems. This conclusion, linking a physical record to a temporal one, represents an assessment of the extent of current human impact on global systems in a way that provides a warning that all policy design and evaluation must acknowledge that the impacts of human activity are taking place on a planetary scale. As a result, it is argued that national and international environmental policies need to be reconsidered. Environmental economics considers the interaction between people and natural systems. So it comes squarely into conflict with conventional practices in both economics and ecology. Each discipline marginalizes the role of the other in the outcomes it describes. Market and natural systems are not separate. This conclusion is important to the evaluation of how (a) economic analysis avoided recognition of natural systems, (b) the separation of these systems affects past assessments of natural resource adequacy, and (c) policy needs to be redesigned in ways that help direct technological innovation that is responsive to the importance of nonmarket environmental services to the global economy and to sustaining the Earth’s living systems.

Article

Ruda Zhang, Patrick Wingo, Rodrigo Duran, Kelly Rose, Jennifer Bauer, and Roger Ghanem

Economic assessment in environmental science means measuring and evaluating environmental impacts, adaptation, and vulnerability. Integrated assessment modeling (IAM) is a unifying framework of environmental economics, which attempts to combine key elements of physical, ecological, and socioeconomic systems. The first part of this article reviews the literature on the IAM framework: its components, relations between the components, and examples. For such models to inform environmental decision-making, they must quantify the uncertainties associated with their estimates. Uncertainty characterization in integrated assessment varies by component models: uncertainties associated with mechanistic physical models are often assessed with an ensemble of simulations or Monte Carlo sampling, while uncertainties associated with impact models are evaluated by conjecture or econometric analysis. The second part of this article reviews the literature on uncertainty in integrated assessment, by type and by component. Probabilistic learning on manifolds (PLoM) is a machine learning technique that constructs a joint probability model of all relevant variables, which may be concentrated on a low-dimensional geometric structure. Compared to traditional density estimation methods, PLoM is more efficient especially when the data are generated by a few latent variables. With the manifold-constrained joint probability model learned by PLoM from a small, initial sample, manifold sampling creates new samples for evaluating converged statistics, which helps answer policy-making questions from prediction, to response, and prevention. As a concrete example, this article reviews IAMs of offshore oil spills—which integrate environmental models, transport models, spill scenarios, and exposure metrics—and demonstrates the use of manifold sampling in assessing the risk of drilling in the Gulf of Mexico.

Article

Deltas have played a significant role in the growth of human civilization because of their unique economic and ecological importance. However, deltas are becoming increasingly vulnerable because of the impact of intensive human developmental activities, high population and urban growth, subsidence, climate change, and the associated rise in sea level. The trapping of sediments by dams is another major threat to the long-term stability and sustainability of deltas. The emergence and global acceptance of the concept of sustainable development in the 1980s led to the advent of several multidisciplinary and applied fields of research, including environmental science, environmental geology, and sustainability science. Environmental geology focuses on the application of geologic knowledge and principles to broad-ranging environmental and socioeconomic issues, including the specific problems confronting deltas. The key environmental geologic challenges in deltas (especially urban delta areas) are: increasing exposure and vulnerability to geologic hazards (flooding, cyclones, etc.), rise in sea level, decreasing sediment load supply, contamination of soil and water resources, provision of adequate drinking water, and safe waste disposal. The application of geologic knowledge and principles to these challenges requires consideration of the critical geologic controls, such as the geological history, stratigraphy, depositional environment, and the properties of the alluvial sediments. Until recently, most of the traditional engineered solutions in the management of deltas were designed to keep out water (fighting nature), typically without adequate geological/hydrological input, rather than building with nature. Recent innovative approaches to delta management involve a paradigm shift from the traditional approach to a more integrated, holistic, adaptive, and ecologically based philosophy that incorporates some critical geological and hydrological perspectives, for instance, widening and deepening rivers and flood plains as well as constructing secondary channels (i.e., making more room for water). A key challenge, however, is the establishment of a close and functional communication between environmental geologists and all other stakeholders involved in delta management. In addition, there is growing global consensus regarding the need for international cooperation that cuts across disciplines, sectors, and regions in addressing the challenges facing deltas. Integrating good policy and governance is also essential.

Article

Humans have been exposed to naturally occurring toxic chemicals and materials over the course of their existence as a species. These materials include various metals, the metalloid arsenic, and atmospheric combustion particulates, as well as bacterial, fungal, algal, and plant toxins. They have also consumed plants that contain a host of phytochemicals, many of which are believed to be beneficial, such as plant polyphenols. People are exposed to these various substances from a number of sources. The pathways of exposure include air, water, groundwater, soil (including via plants grown in toxic soils), and various foods, such as vegetables, fruit, fungi, seafood and fish, eggs, wild birds, marine mammals, and farmed animals. An overview of the various health benefits, hazards and risks relating to the risks reveals the very wide variety of chemicals and materials that are present in the natural environment and can interact with human biology, to both its betterment and detriment. The major naturally occurring toxic materials that impact human health include metals, metalloids (e.g., arsenic), and airborne particulates. The Industrial Revolution is a major event that increased ecosystem degradation and the various types and duration of exposure to toxic materials. The explosions in new organic and organometallic products that were and still are produced over the past two centuries have introduced new toxicities and associated pathologies. The prevalence in the environment of harmful particulates from motor-vehicle exhaust emissions, road dust and tire dust, and other combustion processes must also be considered in the broader context of air pollution. Natural products, such as bacterial, fungal, algal, and plant toxins, can also have adverse effects on health. At the same time, plant-derived phytochemicals (i.e., polyphenols, terpenoids, urolithins, and phenolic acids, etc.) also have beneficial and potential beneficial effects, particularly with regard to their anti-inflammatory effects. Because inflammation is associated with most disease processes, phytochemicals that have antioxidant and anti-inflammatory properties are of great interest as potential nutraceuticals. These potentially beneficial compounds may help to combat various cancers; autoimmune conditions; neurodegenerative diseases, including dementias; and psychotic conditions, such as depression, and are also essential micronutrients that promote health and well-being. The cellular and molecular mechanisms in humans that phytochemicals modulate, or otherwise interact with, to improve human health are now known. In the early 21st century, some of the current pollution issues are legacy problems from past industrialization, such as mercury and persistent organic pollutants (POPs). These POPs include many organochlorine compounds (e.g., polychlorinated biphenyls, pesticides, polychlorinated and polybrominated dibenzo-dioxans and -furans), as well as polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs, and others. The toxicity of chemical mixtures is still a largely unknown problem, particularly with regard to possible synergies. The continuing development of new organic chemicals and nanomaterials is an important environmental health issue; and the need for vigilance with respect to their possible health hazards is urgent. Nanomaterials, in particular, pose potential novel problems in the context of their chemical properties; humans have not previously been exposed to these types of materials, which may well be able to exploit gaps in our existing cellular protection mechanisms. Hopefully, future advances in knowledge emerging from combinatorial chemistry, molecular modeling, and predictive quantitative structure-activity relationships (QSARs), will enable improved identification of the potential toxic properties of novel industrial organic chemicals, pharmaceuticals, and nanomaterials before they are released into the natural environment, and thus prevent a repetition of past disastrous events.

Article

George Morris, Marco Martuzzi, Lora Fleming, Francesca Racioppi, and Srdan Matic

Adequate funding, careful planning, and good governance are central to delivering quality research in any field. Yet, the strategic directions for research, the mechanisms through which topics emerge, and the priorities assigned are equally deserving of attention. The need to understand the role played by the environment and to manage the physical environment and the human activities which bear upon it in pursuit of health, well-being, and equity are long established. These imperatives drive environmental health research as a key branch of scientific inquiry. Targeted research over many years, applying established methods, has informed society’s understanding of the toxic, infectious, allergenic, and physical threats to health from our physical surroundings and how these may be managed. Essentially hazard-focused research continues to deliver policy-relevant findings while simultaneously posing questions to be addressed through further research. Environmental health in the 21st century is, however, confronted by additional challenges of a rather different character. These include the need to understand, in a better and more policy-relevant way, the contributions of the environment to health and equity in complex interaction with other societal and individual-level influences (a so-called socioecological model). Also important are the potential of especially green and blue natural environments to improve health and well-being and promote equity, and the health implications of new approaches to production and consumption, such as the circular economy. Such challenges add breadth, depth, and richness to the environmental health research agenda, but when combined with the existential and public health threat of humanity’s detrimental impact on the Earth’s systems, they entail a need for new and better strategies for scientific inquiry. As we confront the challenges and uncertainties of the Anthropocene, the complexity expands, the stakes become sky-high, and diverse interests and values clash. Thus, the pressure on environmental health researchers to evolve and engage with stakeholders and reach out to the widest constituency of policy and practice has never been greater, nor has the need to organize to deliver. A disparate range of contextual factors have become pertinent when scoping the now significantly extended, territory for environmental health research. Moreover, the challenges of prioritizing among the candidate topics for investigation have scarcely been greater.

Article

Russian environmental history is a new field of inquiry, with the first archivally based monographs appearing only in the last years of the 20th century. Despite the field’s youth, scholars studying the topic have developed two distinct and contrasting approaches to its central question: How should the relationship between Russian culture and the natural world be characterized? Implicit in this question are two others: Is the Russian attitude toward the non-human world more sensitive than that which prevails in the West; and if so, is the Russian environment healthier or more stable than that of the United States and Western Europe? In other words, does Russia, because of its traditional suspicion of individualism and consumerism, have something to teach the West? Or, on the contrary, has the Russian historical tendency toward authoritarianism and collectivism facilitated predatory policies that have degraded the environment? Because environmentalism as a political movement and environmental history as an academic subject both emerged during the Cold War, at a time when the Western social, political, and economic system vied with the Soviet approach for support around the world, the comparative (and competitive) aspect of Russian environmental history has always been an important factor, although sometimes an implicit one. Accordingly, the existing scholarly works about Russian environmental history generally fall into one of two camps: one very critical of the Russian environmental record and the seeming disregard of the Russian government for environmental damage, and a somewhat newer group of works that draw attention to the fundamentally different concerns that motivate Russian environmental policies. The first group emphasizes Russian environmental catastrophes such as the desiccated Aral Sea, the eroded Virgin Lands, and the public health epidemics related to the severely polluted air of Soviet industrial cities. The environmental crises that the first group cites are, most often, problems once prevalent in the West, but successfully ameliorated by the environmental legislation of the late 1960s and early 1970s. The second group, in contrast, highlights Russian environmental policies that do not have strict Western analogues, suggesting that a thorough comparison of the Russian and Western environmental records requires, first of all, a careful examination of what constitutes environmental responsibility.

Article

The Mississippi River, the longest in North America, is really two rivers geophysically. The volume is less, the slope steeper, the velocity greater, and the channel straighter in its upper portion than in its lower portion. Below the mouth of the Ohio River, the Mississippi meanders through a continental depression that it has slowly filled with sediment over many millennia. Some limnologists and hydrologists consider the transitional middle portion of the Mississippi, where the waters of its two greatest tributaries, the Missouri and Ohio rivers, join it, to comprise a third river, in terms of its behavioral patterns and stream and floodplain ecologies. The Mississippi River humans have known, with its two or three distinct sections, is a relatively recent formation. The lower Mississippi only settled into its current formation following the last ice age and the dissipation of water released by receding glaciers. Much of the current river delta is newer still, having taken shape over the last three to five hundred years. Within the lower section of the Mississippi are two subsections, the meander zone and the delta. Below Cape Girardeau, Missouri, the river passes through Crowley’s Ridge and enters the wide and flat alluvial plain. Here the river meanders in great loops, often doubling back on itself, forming cut offs that, if abandoned by the river, forming lakes. Until modern times, most of the plain, approximately 35,000 square miles, comprised a vast and rich—rich in terms of biomass production—ecological wetland sustained by annual Mississippi River floods that brought not just water, but fertile sediment—topsoil—gathered from across much of the continent. People thrived in the Mississippi River meander zone. Some of the most sophisticated indigenous cultures of North America emerged here. Between Natchez, Mississippi, and Baton Rouge, Louisiana, at Old River Control, the Mississippi begins to fork into distributary channels, the largest of which is the Atchafalaya River. The Mississippi River delta begins here, formed of river sediment accrued upon the continental shelf. In the delta the land is wetter, the ground water table is shallower. Closer to the sea, the water becomes brackish and patterns of river sediment distribution are shaped by ocean tides and waves. The delta is frequently buffeted by hurricanes. Over the last century and a half people have transformed the lower Mississippi River, principally through the construction of levees and drainage canals that have effectively disconnected the river from the floodplain. The intention has been to dry the land adjacent to the river, to make it useful for agriculture and urban development. However, an unintended effect of flood control and wetland drainage has been to interfere with the flood-pulse process that sustained the lower valley ecology, and with the process of sediment distribution that built the delta and much of the Louisiana coastline. The seriousness of the delta’s deterioration has become especially apparent since Hurricane Katrina, and has moved conservation groups to action. They are pushing politicians and engineers to reconsider their approach to Mississippi River management.

Article

Agroforestry systems, the planting of perennial trees and/or shrubs with annual agronomic crops or pasture, have been proposed as more environmentally benign, alternative systems for agricultural production in both temperate and tropical regions of the world. Agroforestry provides a number of environmental benefits as confirmed by scientific literature. The four major environmental benefits of agroforestry are (1) climate change mitigation through carbon sequestration, (2) biodiversity conservation, (3) soil health enrichment, and (4) air and water quality improvement. In addition to environmental benefits, the economic benefits of multiple crops within agroforestry systems have also generated interest in their adoption by farmers the world over. The major negative impacts come from conversion or degradation of forests following certain traditional practices, which may not fit in the definition of modern agroforestry. Challenges remain for widespread adoption of agroforestry, particularly in the temperate world; however, a new resurgence of interest in this land-use practice among small-scale farmers has shed light on a path toward its possible success. Past evidence clearly indicates that agroforestry, as part of a multifunctional working landscape, can offer not only economic return, but also a number of ecosystem services and environmental benefits for a sustainable society.

Article

Kimberly M. Carlson and Rachael D. Garrett

Oil crops play a critical role in global food and energy systems. Since these crops have high oil content, they provide cooking oils for human consumption, biofuels for energy, feed for animals, and ingredients in beauty products and industrial processes. In 2014, oil crops occupied about 20% of crop harvested area worldwide. While small-scale oil crop production for subsistence or local consumption continues in certain regions, global demand for these versatile crops has led to substantial expansion of oil crop agriculture destined for export or urban markets. This expansion and subsequent cultivation has diverse effects on the environment, including loss of forests, savannas, and grasslands, greenhouse gas emissions, regional climate change, biodiversity decline, fire, and altered water quality and hydrology. Oil palm in Southeast Asia and soybean in South America have been identified as major proximate causes of tropical deforestation and environmental degradation. Stringent conservation policies and yield increases are thought to be critical to reducing rates of soybean and oil palm expansion into natural ecosystems. However, the higher profits that often accompany greater yields may encourage further expansion, while policies that restrict oil crop expansion in one region may generate secondary “spillover” effects on other crops and regions. Due to these complex feedbacks, ensuring a sustainable supply of oil crop products to meet global demand remains a major challenge for agricultural companies, farmers, governments, and civil society.

Article

The environmental Kuznets curve (EKC) is a hypothesized relationship between environmental degradation and GDP per capita. In the early stages of economic growth, pollution emissions and other human impacts on the environment increase, but beyond some level of GDP per capita (which varies for different indicators), the trend reverses, so that at high income levels, economic growth leads to environmental improvement. This implies that environmental impacts or emissions per capita are an inverted U-shaped function of GDP per capita. The EKC has been the dominant approach among economists to modeling ambient pollution concentrations and aggregate emissions since Grossman and Krueger introduced it in 1991 and is even found in introductory economics textbooks. Despite this, the EKC was criticized almost from the start on statistical and policy grounds, and debate continues. While concentrations and also emissions of some local pollutants, such as sulfur dioxide, have clearly declined in developed countries in recent decades, evidence for other pollutants, such as carbon dioxide, is much weaker. Initially, many understood the EKC to imply that environmental problems might be due to a lack of sufficient economic development, rather than the reverse, as was conventionally thought. This alarmed others because a simplistic policy prescription based on this idea, while perhaps addressing some issues like deforestation or local air pollution, could exacerbate environmental problems like climate change. Additionally, many of the econometric studies that supported the EKC were found to be statistically fragile. Some more recent research integrates the EKC with alternative approaches and finds that the relation between environmental impacts and development is subtler than the simple picture painted by the EKC. This research shows that usually, growth in the scale of the economy increases environmental impacts, all else held constant. However, the impact of growth might decline as countries get richer, and richer countries are likely to make more rapid progress in reducing environmental impacts. Finally, there is often convergence among countries, so that countries that have relatively high levels of impacts reduce them more quickly or increase them more slowly, all else held constant.

Article

Haitao Yin, Xuemei Zhang, and Feng Wang

China’s environmental challenges are unprecedented in terms of their size and severity. The country’s constantly evolving regulatory systems are a blend of lessons learned from Western market- and information-based regulations, China’s own unique political and administrative context as an authoritarian country, the complex relationship between its central and local governments, and the balance between the needs for environmental protection and economic growth. A close look at China’s environmental regulatory system may offer useful insights to those working toward a more sustainable future. In the 21st century, the environmental regulatory system in China is entering a new era. Over the last three decades, efforts have focused on developing regulatory standards for air, water, and solid waste, among many other pollutants. This regulatory system primarily follows a command-and-control approach and is often criticized for its failure to curb China’s increasingly severe environmental degradation. In the future, the Chinese government may pursue two routes. The first is to increase the use of market mechanisms and information tools to enable and incentivize more stakeholders, such as consumers, nongovernmental organizations, and communities, to engage in the development and enforcement of environmental regulations, for instance, through cap-and-trade systems, information-disclosure programs, and environmental insurance. However, existing evidence shows that the usefulness of these new instruments is limited. Another route is to develop new mechanisms to strengthen the enforcement of traditional command-and-control regulations. Examples include making environmental performance a key performance indicator (KPI) in the performance appraisals of government officials or leveraging the power of financial sectors. These approaches are a footnote to the new argument in favor of environmental authoritarianism, which suggests that authoritarian regimes, setting authoritarian rules, may be more capable of handling complex environmental pressures. More studies need to be conducted on the effectiveness of these new approaches and the mechanisms by which they may achieve success.

Article

Rama Mohana R Turaga and Anish Sugathan

Pollution is one of the greatest causes of premature deaths and morbidity in the world, and this burden of pollution is disproportionately borne by the lower and middle income countries such as India—home to more than one-sixth of humanity. In India, due to the compound effect of its large population and high levels of environmental pollution, the human cost of pollution is among the highest in the world. The environmental degradation is partly a consequence of the development model pursued after independence in 1947 based on large-scale industrialization and exploitative resource utilization, with scant consideration for sustainability. Moreover, it is also due to the failure of the environmental administration, governance, and regulatory infrastructure to keep pace with the magnitude and pace of economic growth in India since economic liberalization in 1991. Ironically, India was also one of the early pioneers of integrating environmental considerations into its legislative and policy-making process beginning in the early 1970s. The federal and state environmental regulation and policy framing institutions set up during this era, along with environmental legislation such as the Environment (Protection) Act 1986, are comparable in design, stringency, and comprehensiveness to other contemporary command-and-control environmental regulatory regimes in many industrially developed economies. However, the widening gap between de jure expectations of environmental compliance and the de facto state of affairs has been a great concern for environmental governance in the country. The ongoing debates discuss several mechanisms to address the regulatory failures. The first is a greater emphasis on strengthening institutions and mechanisms that foster transparency and public disclosure by pollution sources with the intent to increase access to and credibility of information on pollution. Proponents argue this will help mobilize groups such as non-governmental organizations (NGOs) and the general public to pressure the industry and government to improve regulatory enforcement. Second, there have been calls for wider adoption of market-based instruments that are more efficient than the traditional command-and-control approaches on which India relies. Again, information is a prerequisite for the functioning of such market-based regulatory mechanisms. Third, the legal infrastructure to facilitate expedited hearing of environmental litigation is being created. With the establishment of the National Green Tribunal in 2010, India is one of only three other countries in the world to have an exclusive judicial body to hear environmental cases. This is potentially a significant step in providing greater access to environmental justice. An emerging view, however, argues that the prevailing economic development model is incompatible with ensuring sustainable development and requires a radical rethink.

Article

María E. Ibarrarán and Jerónimo Chavarría

In Mexico, the laws and norms that regulate the environment emerged at the end of the 19th century to standardize infrastructure construction and preserve nature. However, it was not until the early 1970s that the first formal government entity dedicated to promote environmental protection, the Vice-Ministry for Environmental Improvement, under the Ministry of Health, was founded, mostly responding to a government initiative rather than social pressure. Other laws were then issued and applied by the Secretariat of Urban Development and Ecology. However, in the 1980s, civil society pressed for more regulations aimed at protecting the environment. In the 1990s, the Ministry of the Environment, Natural Resources and Fisheries (SEMARNAP) was created, focusing on natural resources, biodiversity, hazardous waste, and urban-industrial environmental problems. Its objective was to reduce the trends of environmental deterioration and to promote economic and social development under criteria of sustainability. This and other institutions have evolved since then, covering a larger set of topics and media. Nevertheless, degradation has not been stopped and is far from being reverted, because even though there is a toolbox of policies and instruments, many of them economic, they have not been fully implemented in some cases or enforced in others because of economic and political factors. With the changes in institutions, legislation was also modified. Mexico became part of international environmental agreements and included the rights to a safe environment in the constitution. However, this legislation has not been enough to modify behavior because often the incentives either for regulators or for polluters themselves are not enough. Environmental degradation is a market failure. It can be shaped as an externality that markets alone cannot solve either because of overproduction, abuse of open access resources, or underprovision of public goods. In any of these cases, resolution comes only through government intervention. Regulations must include consideration of the benefits and costs they impose to change behavior. However, regardless of formal regulation, there are still a host of environmental problems that affect both urban and rural communities and Indigenous and non-Indigenous populations, and there is a regulatory vacuum integrating environmental aspects with economic and social development issues. Examples of this are the Energy Reform of 2013 and the Law of Waters, as well as the Law of Biodiversity, where impacts on communities are often left aside, because of a de facto prevalence of economic activity over human rights. On the other hand, legal loopholes prevent adequate management of wildlife resources and sufficient treatment of hazardous waste discarded by industries, even if they are regulated. Furthermore, environmental regulations are based on corrective regulations, such as obligations, restrictions, and sanctions, but these have not strengthened their preventive character. It is still less expensive to pollute or degrade the environment than take measures not to. A shift in the paradigm toward policies that create incentives to protect the environment, both for polluters and regulators, may foster much better environmental quality.

Article

George Morris and Patrick Saunders

Most people today readily accept that their health and disease are products of personal characteristics such as their age, gender, and genetic inheritance; the choices they make; and, of course, a complex array of factors operating at the level of society. Individuals frequently have little or no control over the cultural, economic, and social influences that shape their lives and their health and well-being. The environment that forms the physical context for their lives is one such influence and comprises the places where people live, learn work, play, and socialize, the air they breathe, and the food and water they consume. Interest in the physical environment as a component of human health goes back many thousands of years and when, around two and a half millennia ago, humans started to write down ideas about health, disease, and their determinants, many of these ideas centered on the physical environment. The modern public health movement came into existence in the 19th century as a response to the dreadful unsanitary conditions endured by the urban poor of the Industrial Revolution. These conditions nurtured disease, dramatically shortening life. Thus, a public health movement that was ultimately to change the health and prosperity of millions of people across the world was launched on an “environmental conceptualization” of health. Yet, although the physical environment, especially in towns and cities, has changed dramatically in the 200 years since the Industrial Revolution, so too has our understanding of the relationship between the environment and human health and the importance we attach to it. The decades immediately following World War II were distinguished by declining influence for public health as a discipline. Health and disease were increasingly “individualized”—a trend that served to further diminish interest in the environment, which was no longer seen as an important component in the health concerns of the day. Yet, as the 20th century wore on, a range of factors emerged to r-establish a belief in the environment as a key issue in the health of Western society. These included new toxic and infectious threats acting at the population level but also the renaissance of a “socioecological model” of public health that demanded a much richer and often more subtle understanding of how local surroundings might act to both improve and damage human health and well-being. Yet, just as society has begun to shape a much more sophisticated response to reunite health with place and, with this, shape new policies to address complex contemporary challenges, such as obesity, diminished mental health, and well-being and inequities, a new challenge has emerged. In its simplest terms, human activity now seriously threatens the planetary processes and systems on which humankind depends for health and well-being and, ultimately, survival. Ecological public health—the need to build health and well-being, henceforth on ecological principles—may be seen as the society’s greatest 21st-century imperative. Success will involve nothing less than a fundamental rethink of the interplay between society, the economy, and the environment. Importantly, it will demand an environmental conceptualization of the public health as no less radical than the environmental conceptualization that launched modern public health in the 19th century, only now the challenge presents on a vastly extended temporal and spatial scale.

Article

While genomics has been founded on accurate tools that lead to a limited amount of classification error, exposure assessment in epidemiology is often affected by large error. The “environment” is in fact a complex construct that encompasses chemical exposures (e.g., to carcinogens); biological agents (viruses, or the “microbiome”); and social relationships. The “exposome” concept was then put forward to stress the relatively poor development of appropriate tools for exposure assessment when applied to the study of disease etiology. Three layers of the exposome have been proposed: “general external” (including social capital, stress and psychology); “specific external” (including chemicals, viruses, radiation, etc.); and “internal” (including for example metabolism and gut microflora). In addition, there are at least three properties of the exposome: (a) it is based on a refinement of tools to measure exposures (including internal measurements in the body); (b) it involves a broad definition of “exposure” or environment, including overarching concepts at a societal level; and (c) it involves a temporal component (i.e., exposure is analyzed in a life-course perspective). The conceptual and practical challenge is how the different layers (i.e., general, specific external, and internal) connect to each other in a causally meaningful sequence. The relevance of this question pertains to the translation of science into policy—for example, if experiences in early life impact on the adult risk of disease, and on the quality of aging, how is distant action to be incorporated in biological causal models and into policy interventions? A useful causal theory to address scientific and policy question about exposure is based on the concept of information transmission. Such a theory can explain how to connect the different layers of the exposome in a life-course temporal frame and helps identify the best level for intervention (molecular, individual, or population level). In this context epigenetics plays a key role, partly because it explains the long-distance persistence of epigenetic changes via the concept of “epigenetic memory.”

Article

Jozef Keulartz

The animal world is under increasing pressure, given the magnitude of anthropogenic environmental stress, especially from human-caused rapid climate change together with habitat conversion, fragmentation, and destruction. There is a global wave of species extinctions and decline in local species abundance. To stop or even reverse this so-called defaunation process, in situ conservation (in the wild) is no longer effective without ex situ conservation (in captivity). Consequently, zoos could play an ever-greater role in the conservation of endangered species and wildlife—hence the slogan Captivity for Conservation. However, the integration of zoo-based tools and techniques in species conservation has led to many conflicts between wildlife conservationists and animal protectionists. Many wildlife conservationists agree with Michael Soulé, the widely acclaimed doyen of the relatively new discipline of conservation biology, that conservation and animal welfare are conceptually distinct, and that they should remain politically separate. Animal protectionists, on the other hand, draw support from existing leading accounts of animal ethics that oppose the idea of captivity for conservation, either because infringing an individual’s right to freedom for the preservation of the species is considered as morally wrong, or because the benefits of species conservation are not seen as significant enough to overcome the presumption against depriving an animal of its liberty. Both sides view animals through different lenses and address different concerns. Whereas animal ethicists focus on individual organisms, and are concerned about the welfare and liberty of animals, wildlife conservationists perceive animals as parts of greater wholes such as species or ecosystems, and consider biodiversity and ecological integrity as key topics. This seemingly intractable controversy can be overcome by transcending both perspectives, and developing a bifocal view in which zoo animals are perceived as individuals in need of specific care and, at the same time, as members of a species in need of protection. Based on such a bifocal approach that has lately been adopted by a growing international movement of “Compassionate Conservation,” the modern zoo can only achieve its conservation mission if it finds a morally acceptable balance between animal welfare concerns and species conservation commitments. The prospects for the zoo to achieve such a balance are promising. Over the past decade or so, zoos have made serious and sustained efforts to ensure and enhance animal welfare. At the same time, the zoo’s contribution to species conservation has also improved considerably.

Article

Juha Merilä and Ary A. Hoffmann

Changing climatic conditions have both direct and indirect influences on abiotic and biotic processes and represent a potent source of novel selection pressures for adaptive evolution. In addition, climate change can impact evolution by altering patterns of hybridization, changing population size, and altering patterns of gene flow in landscapes. Given that scientific evidence for rapid evolutionary adaptation to spatial variation in abiotic and biotic environmental conditions—analogous to that seen in changes brought by climate change—is ubiquitous, ongoing climate change is expected to have large and widespread evolutionary impacts on wild populations. However, phenotypic plasticity, migration, and various kinds of genetic and ecological constraints can preclude organisms from evolving much in response to climate change, and generalizations about the rate and magnitude of expected responses are difficult to make for a number of reasons. First, the study of microevolutionary responses to climate change is a young field of investigation. While interest in evolutionary impacts of climate change goes back to early macroevolutionary (paleontological) studies focused on prehistoric climate changes, microevolutionary studies started only in the late 1980s. The discipline gained real momentum in the 2000s after the concept of climate change became of interest to the general public and funding organizations. As such, no general conclusions have yet emerged. Second, the complexity of biotic changes triggered by novel climatic conditions renders predictions about patterns and strength of natural selection difficult. Third, predictions are complicated also because the expression of genetic variability in traits of ecological importance varies with environmental conditions, affecting expected responses to climate-mediated selection. There are now several examples where organisms have evolved in response to selection pressures associated with climate change, including changes in the timing of life history events and in the ability to tolerate abiotic and biotic stresses arising from climate change. However, there are also many examples where expected selection responses have not been detected. This may be partly explainable by methodological difficulties involved with detecting genetic changes, but also by various processes constraining evolution. There are concerns that the rates of environmental changes are too fast to allow many, especially large and long-lived, organisms to maintain adaptedness. Theoretical studies suggest that maximal sustainable rates of evolutionary change are on the order of 0.1 haldanes (i.e., phenotypic standard deviations per generation) or less, whereas the rates expected under current climate change projections will often require faster adaptation. Hence, widespread maladaptation and extinctions are expected. These concerns are compounded by the expectation that the amount of genetic variation harbored by populations and available for selection will be reduced by habitat destruction and fragmentation caused by human activities, although in some cases this may be countered by hybridization. Rates of adaptation will also depend on patterns of gene flow and the steepness of climatic gradients. Theoretical studies also suggest that phenotypic plasticity (i.e., nongenetic phenotypic changes) can affect evolutionary genetic changes, but relevant empirical evidence is still scarce. While all of these factors point to a high level of uncertainty around evolutionary changes, it is nevertheless important to consider evolutionary resilience in enhancing the ability of organisms to adapt to climate change.

Article

Agriculture has been the principal influence on the physical structure of the English landscape for many thousands of years. Driven by a wider raft of demographic, social, and economic developments, farming has changed in complex ways over this lengthy period, with differing responses to the productive potential and problems of local environments leading to the emergence of distinct regional landscapes. The character and configuration of these, as much as any contemporary influences, have in turn structured the practice of agriculture at particular points in time. The increasing complexity of the wider economy has also been a key influence on the development of the farmed landscape, especially large-scale industrialization in the late 18th and 19th centuries; and, from the late 19th century, globalization and increasing levels of state intervention. Change in agricultural systems has not continued at a constant rate but has displayed periods of more and less innovation.

Article

Indigenous rights to water follow diverse trajectories across the globe. In Asia and Africa even the concept of indigeneity is questioned and peoples with ancient histories connected to place are defined by ethnicity as opposed to sovereign or place-based rights, although many seek to change that. In South America indigenous voices are rising. In the parts of the globe colonized by European settlement, the definition of these rights has been in a continual state of transition as social norms evolve and indigenous capacity to assert rights grow. From the point of European contact, these rights have been contested. They have evolved primarily through judicial rulings by the highest court in the relevant nation-state. For those nation-states that do address whether indigenous rights to land and water exist, the approach has ranged from the 18th- and 19th-century doctrines of terra nullius (the land (and resources) belonged to no one) to a recognized right of “use and occupancy” that could be usurped under the doctrine of “discovery” by the conquering power. In the 20th and 21st centuries the evolution of the recognition of indigenous rights remains uneven, reflecting the values, judicial doctrine, and degree to which the contested water resource is already developed in the relevant nation-state. Thus, indigenous rights to water range from the recognition of cultural and spiritual rights that would have been in existence at the time of European contact, to inclusion of subsistence rights, rights sufficient for economic development, rights for homeland purposes, and rights as guardian for a water resource. At the forefront in this process of recognition is the right of indigenous peoples as sovereign to control, allocate, develop and protect their own water resources. This aspirational goal is reflected in the effort to create a common global understanding of the rights of indigenous peoples through declaration and definition of the right of self-determination articulated in the UN Declaration on the Rights of Indigenous Peoples.

Article

Mark V. Barrow

The prospect of extinction, the complete loss of a species or other group of organisms, has long provoked strong responses. Until the turn of the 18th century, deeply held and widely shared beliefs about the order of nature led to a firm rejection of the possibility that species could entirely vanish. During the 19th century, however, resistance to the idea of extinction gave way to widespread acceptance following the discovery of the fossil remains of numerous previously unknown forms and direct experience with contemporary human-driven decline and the destruction of several species. In an effort to stem continued loss, at the turn of the 19th century, naturalists, conservationists, and sportsmen developed arguments for preventing extinction, created wildlife conservation organizations, lobbied for early protective laws and treaties, pushed for the first government-sponsored parks and refuges, and experimented with captive breeding. In the first half of the 20th century, scientists began systematically gathering more data about the problem through global inventories of endangered species and the first life-history and ecological studies of those species. The second half of the 20th and the beginning of the 21st centuries have been characterized both by accelerating threats to the world’s biota and greater attention to the problem of extinction. Powerful new laws, like the U.S. Endangered Species Act of 1973, have been enacted and numerous international agreements negotiated in an attempt to address the issue. Despite considerable effort, scientists remain fearful that the current rate of species loss is similar to that experienced during the five great mass extinction events identified in the fossil record, leading to declarations that the world is facing a biodiversity crisis. Responding to this crisis, often referred to as the sixth extinction, scientists have launched a new interdisciplinary, mission-oriented discipline, conservation biology, that seeks not just to understand but also to reverse biota loss. Scientists and conservationists have also developed controversial new approaches to the growing problem of extinction: rewilding, which involves establishing expansive core reserves that are connected with migratory corridors and that include populations of apex predators, and de-extinction, which uses genetic engineering techniques in a bid to resurrect lost species. Even with the development of new knowledge and new tools that seek to reverse large-scale species decline, a new and particularly imposing danger, climate change, looms on the horizon, threatening to undermine those efforts.