In 1945 the Amazon biome was almost intact. Marks of ancient cultural developments in Andean and lowland Amazon had cicatrized and the impacts of rubber and more recent resources exploitation were reversible. Very few roads existed, and only on the Amazon’s periphery. However, from the 1950s, but especially in the 1960s, Brazil and some Andean countries launched ambitious road-building and colonization processes. Amazon occupation heavily intensified in the 1970s when forest losses began to raise worldwide concern. More roads continued to be built at a geometrically growing pace in every following decade, multiplying correlated deforestation and forest degradation. A no-return point was reached when interoceanic roads crossed the Brazilian-Andean border in the 2000s, exposing remaining safe havens for indigenous people and nature. It is commonly estimated that today no less than 18% of the forest has been substituted by agriculture and that over 60% of that remaining has been significantly degraded.
Theories regarding the importance of biogeochemical cycles have been developed since the 1970s. The confirmation of the role of the Amazon as a carbon sink added some international pressure for its protection. But, in general, the many scientific discoveries regarding the Amazon have not helped to improve its conservation. Instead, a combination of new agricultural technologies, anthropocentric philosophies, and economic changes strongly promoted forest clearing.
Since the 1980s and as of today Amazon conservation efforts have been increasingly diversified, covering five theoretically complementary strategies: (a) more, larger, and better-managed protected areas; (b) more and larger indigenous territories; (c) a series of “sustainable-use” options such as “community-based conservation,” sustainable forestry, and agroforestry; (d) financing of conservation through debt swaps and climate change’s related financial mechanisms; and (e) better legislation and monitoring. Only five small protected areas have existed in the Amazon since the early 1960s but, responding to the road-building boom of the 1970s, several larger patches aiming at conserving viable samples of biological diversity were set aside, principally in Brazil and Peru. Today around 22% of the Amazon is protected but almost half of such areas correspond to categories that allow human presence and resources exploitation, and there is no effective management. Another 28% or more pertains to indigenous people who may or may not conserve the forest. Both types of areas together cover over 45% of the Amazon. None of the strategies, either alone or in conjunction, have fully achieved their objectives, while development pressures and threats multiply as roads and deforestation continue relentlessly, with increasing funding by multilateral and national banks and due to the influence of transnational enterprises.
The future is likely to see unprecedented agriculture expansion and corresponding intensification of deforestation and forest degradation even in protected areas and indigenous land. Additionally, the upper portion of the Amazon basin will be impacted by new, larger hydraulic works. Mining, formal as well as illegal, will increase and spread. Policymakers of Amazon countries still view the region as an area in which to expand conventional development while the South American population continues to be mostly indifferent to Amazon conservation.
Article
Conservation in the Amazon: Evolution and Situation
Marc Dourojeanni
Article
Indigenous Polynesian Agriculture in Hawaiʻi
Noa Kekuewa Lincoln and Peter Vitousek
Agriculture in Hawaiʻi was developed in response to the high spatial heterogeneity of climate and landscape of the archipelago, resulting in a broad range of agricultural strategies. Over time, highly intensive irrigated and rainfed systems emerged, supplemented by extensive use of more marginal lands that supported considerable populations. Due to the late colonization of the islands, the pathways of development are fairly well reconstructed in Hawaiʻi. The earliest agricultural developments took advantage of highly fertile areas with abundant freshwater, utilizing relatively simple techniques such as gardening and shifting cultivation. Over time, investments into land-based infrastructure led to the emergence of irrigated pondfield agriculture found elsewhere in Polynesia. This agricultural form was confined by climatic and geomorphological parameters, and typically occurred in wetter, older landscapes that had developed deep river valleys and alluvial plains. Once initiated, these wetland systems saw regular, continuous development and redevelopment. As populations expanded into areas unable to support irrigated agriculture, highly diverse rainfed agricultural systems emerged that were adapted to local environmental and climatic variables. Development of simple infrastructure over vast areas created intensive rainfed agricultural systems that were unique in Polynesia. Intensification of rainfed agriculture was confined to areas of naturally occurring soil fertility that typically occurred in drier and younger landscapes in the southern end of the archipelago. Both irrigated and rainfed agricultural areas applied supplementary agricultural strategies in surrounding areas such as agroforestry, home gardens, and built soils. Differences in yield, labor, surplus, and resilience of agricultural forms helped shape differentiated political economies, hierarchies, and motivations that played a key role in the development of sociopolitical complexity in the islands.
Article
Politics of Water Flows: Water Supply, Sanitation, and Drainage
Tatiana Acevedo Guerrero
Since the late 20th century, water and sanitation management has been deeply influenced by ideas from economics, specifically by the doctrine of neoliberalism. The resulting set of policy trends are usually referred to as market environmentalism, which in broad terms encourages specific types of water reforms aiming to employ markets as allocation mechanisms, establish private-property rights and full-cost pricing, reduce (or remove) subsidies, and promote private sector management to reduce government interference and avoid the politicization of water and sanitation management. Market environmentalism sees water as a resource that should be efficiently managed through economic reforms.
Instead of seeing water as an external resource to be managed, alternative approaches like political ecology see water as a socio-nature. This means that water is studied as a historical-geographical process in which society and nature are inseparable, mutually produced, and transformable. Political ecological analyses understand processes of environmental change as deeply interrelated to socioeconomic dynamics. They also emphasize the impact of environmental dynamics on social relations and take seriously the question of how the physical properties of water may be sources of unpredictability, unruliness, and resistance from human intentions. As an alternative to the hydrologic cycle, political ecology proposes the concept of hydrosocial cycle, which emphasizes that water is deeply political and social. An analysis of the politics of water flows, drawing from political ecology explores the different relationships and histories reflected in access to (and exclusion from) water supply, sanitation, and drainage. It portrays how power inequalities are at the heart of differentiated levels of access to infrastructure.