The desire of policymakers and public finance institutions to understand the contribution of water infrastructure to the wider economy, rather than the value of project-level outputs in isolation, has spawned a multidisciplinary branch of water resource planning that integrates traditional biophysical modeling of water resource systems with economy-wide models, including computable general equilibrium models. Economy-wide models include several distinct approaches, including input–output models, macro-econometric models, hybrid input–output macro-econometric models, and general equilibrium models—the term “economy-wide” usually refers to a national level analysis, but could also apply to a sub-national region, multi-nation regions, or the world. A key common characteristic of these models is that they disaggregate the overall economy of a country or region into a number of smaller units, or optimizing agents, who in turn interact with other agents in the economy in determining the use of inputs for production, and the outcomes of markets for goods. These economic agents include industries, service providers, households, governments, and many more. Such a holistic general equilibrium modeling approach is particularly useful for understanding and measuring social costs, a key aim in most cost–benefit analyses (CBAs) of water infrastructure investments when the project or program will have non-marginal impacts and current market prices will be impacted and an appropriately detailed social accounting matrix is available. This article draws on examples from recent work on low- and middle-income countries (LMICs) and provides an outline of available resources that are necessary to conduct an economy-wide modeling analysis. LMICs are the focus of larger water resource investment potential in the 21st century, including large-scale hydropower, irrigation, and drinking water supply. A step-by-step approach is illustrated and supports the conclusion that conditions exist to apply these models much more broadly in LMICs to enhance CBAs.
Article
Moving to General Equilibrium: The Role of CGEs for Economic Analysis of Water Infrastructure Projects
Kenneth M. Strzepek and James E. Neumann
Article
Valuing the Benefits of Green Stormwater Infrastructure
Amy W. Ando and Noelwah R. Netusil
Green stormwater infrastructure (GSI), a decentralized approach for managing stormwater that uses natural systems or engineered systems mimicking the natural environment, is being adopted by cities around the world to manage stormwater runoff. The primary benefits of such systems include reduced flooding and improved water quality. GSI projects, such as green roofs, urban tree planting, rain gardens and bioswales, rain barrels, and green streets may also generate cobenefits such as aesthetic improvement, reduced net CO2 emissions, reduced air pollution, and habitat improvement. GSI adoption has been fueled by the promise of environmental benefits along with evidence that GSI is a cost-effective stormwater management strategy, and methods have been developed by economists to quantify those benefits to support GSI planning and policy efforts. A body of multidisciplinary research has quantified significant net benefits from GSI, with particularly robust evidence regarding green roofs, urban trees, and green streets. While many GSI projects generate positive benefits through ecosystem service provision, those benefits can vary with details of the location and the type and scale of GSI installation. Previous work reveals several pitfalls in estimating the benefits of GSI that scientists should avoid, such as double counting values, counting transfer payments as benefits, and using values for benefits like avoided carbon emissions that are biased. Important gaps remain in current knowledge regarding the benefits of GSI, including benefit estimates for some types of GSI elements and outcomes, understanding how GSI benefits last over time, and the distribution of GSI benefits among different groups in urban areas.