The emergence of environment as a security imperative is something that could have been avoided. Early indications showed that if governments did not pay attention to critical environmental issues, these would move up the security agenda. As far back as the Club of Rome 1972 report, Limits to Growth, variables highlighted for policy makers included world population, industrialization, pollution, food production, and resource depletion, all of which impact how we live on this planet.
The term environmental security didn’t come into general use until the 2000s. It had its first substantive framing in 1977, with the Lester Brown Worldwatch Paper 14, “Redefining Security.” Brown argued that the traditional view of national security was based on the “assumption that the principal threat to security comes from other nations.” He went on to argue that future security “may now arise less from the relationship of nation to nation and more from the relationship between man to nature.”
Of the major documents to come out of the Earth Summit in 1992, the Rio Declaration on Environment and Development is probably the first time governments have tried to frame environmental security. Principle 2 says: “States have, in accordance with the Charter of the United Nations and the principles of international law, the sovereign right to exploit their own resources pursuant to their own environmental and developmental policies, and the responsibility to ensure that activities within their jurisdiction or control do not cause damage to the environment of other States or of areas beyond the limits of national.”
In 1994, the UN Development Program defined Human Security into distinct categories, including:
• Economic security (assured and adequate basic incomes).
• Food security (physical and affordable access to food).
• Health security.
• Environmental security (access to safe water, clean air and non-degraded land).
By the time of the World Summit on Sustainable Development, in 2002, water had begun to be identified as a security issue, first at the Rio+5 conference, and as a food security issue at the 1996 FAO Summit. In 2003, UN Secretary General Kofi Annan set up a High-Level Panel on “Threats, Challenges, and Change,” to help the UN prevent and remove threats to peace. It started to lay down new concepts on collective security, identifying six clusters for member states to consider. These included economic and social threats, such as poverty, infectious disease, and environmental degradation.
By 2007, health was being recognized as a part of the environmental security discourse, with World Health Day celebrating “International Health Security (IHS).” In particular, it looked at emerging diseases, economic stability, international crises, humanitarian emergencies, and chemical, radioactive, and biological terror threats. Environmental and climate changes have a growing impact on health. The 2007 Fourth Assessment Report (AR4) of the UN Intergovernmental Panel on Climate Change (IPCC) identified climate security as a key challenge for the 21st century. This was followed up in 2009 by the UCL-Lancet Commission on Managing the Health Effects of Climate Change—linking health and climate change.
In the run-up to Rio+20 and the launch of the Sustainable Development Goals, the issue of the climate-food-water-energy nexus, or rather, inter-linkages, between these issues was highlighted. The dialogue on environmental security has moved from a fringe discussion to being central to our political discourse—this is because of the lack of implementation of previous international agreements.
121-140 of 342 Results
Article
The Emergence of Environment as a Security Imperative
Felix Dodds
Article
Emerging Issues and Challenges in Transboundary Freshwater: The Role of Treaties and Treaty Design
Shlomi Dinar
Freshwater’s transboundary nature (in the form of rivers, lakes, and underground aquifers) means that it ties countries (or riparians) in a web of interdependence. Combined with water scarcity and increased water variability, and the sheer necessity of water for survival and national development, these interdependencies may often lead to conflict. While such conflict is rarely violent in nature, political conflict over water is quite common as states diverge over how to share water or whether to develop a joint river for hydropower, say, or to use the water for agriculture.
For the same reasons that water may be a source of conflict, it is also a source of cooperation. In fact, if the number of documented international agreements over shared water resources is any indication, then water’s cooperative history is a rich one. As the most important and accepted tools for formalizing inter-state cooperation, treaties have become the focus of research and analysis. While treaties do not necessarily guarantee cooperation, they do provide states with a platform for dealing with conflict as well as the means to create benefits for sustained cooperation. This also suggests that the way treaties are designed—in other words, what mechanisms and instruments are included in the agreement—is likewise relevant to analyzing conflict and cooperation.
Article
Emerging Issues in Groundwater Sustainability: New Challenges
Encarna Esteban
The increased pressure on groundwater has resulted in a major deterioration of the overall status of this resource. Despite efforts to control the degradation of underground water bodies, most aquifers worldwide experience serious quality and quantity problems. New emerging issues around groundwater resources have become relevant and pose additional protection and management challenges. Climate change, with predictable impacts on temperature and precipitation, will cause considerable fluctuations in aquifer recharge levels and subsequent problems in the status of these water bodies. Expected reductions in water availability will increase groundwater withdrawals not just for irrigation but also for urban and industrial water use. Declines in stored water will have an impact on many freshwater ecosystems whose survival depends on the status of groundwater bodies. Furthermore, land subsidence, as a side effect of aquifer overexploitation, involves land collapse and deformation that are especially harmful for urban areas and deteriorate physical and hydrological water systems. All these new challenges require integrated planning strategies and multisectorial solutions to curtail the deterioration of these resources. Although these issues have been studied, in-depth analyses of the economic, social, and policy implications of groundwater management strategies are still necessary.
Article
Environmental Accounting
Jean-Louis Weber
Environmental accounting is an attempt to broaden the scope of the accounting frameworks used to assess economic performance, to take stock of elements that are not recorded in public or private accounting books. These gaps occur because the various costs of using nature are not captured, being considered, in many cases, as externalities that can be forwarded to others or postponed. Positive externalities—the natural resource—are depleted with no recording in National Accounts (while companies do record them as depreciation elements). Depletion of renewable resource results in degradation of the environment, which adds to negative externalities resulting from pollution and fragmentation of cyclic and living systems. Degradation, or its financial counterpart in depreciation, is not recorded at all. Therefore, the indicators of production, income, consumption, saving, investment, and debts on which many economic decisions are taken are flawed, or at least incomplete and sometimes misleading, when immediate benefits are in fact losses in the long run, when we consume the reproductive functions of our capital. Although national accounting has been an important driving force in change, environmental accounting encompasses all accounting frameworks including national accounts, financial accounting standards, and accounts established to assess the costs and benefits of plans and projects.
There are several approaches to economic environmental accounting at the national level. Of these approaches, one purpose is the calculation of genuine economic welfare by taking into account losses from environmental damage caused by economic activity and gains from unrecorded services provided by Nature. Here, particular attention is given to the calculation of a “Green GDP” or “Adjusted National Income” and/or “Genuine Savings” as well as natural assets value and depletion. A different view considers the damages caused to renewable natural capital and the resulting maintenance and restoration costs. Besides approaches based on benefits and costs, more descriptive accounts in physical units are produced with the purpose of assessing resource use efficiency. With regard to natural assets, the focus can be on assets directly used by the economy, or more broadly, on ecosystem capacity to deliver services, ecosystem resilience, and its possible degradation. These different approaches are not necessarily contradictory, although controversies can be noted in the literature.
The discussion focuses on issues such as the legitimacy of combining values obtained with shadow prices (needed to value the elements that are not priced by the market) with the transaction values recorded in the national accounts, the relative importance of accounts in monetary vs. physical units, and ultimately, the goals for environmental accounting. These goals include assessing the sustainability of the economy in terms of conservation (or increase) of the net income flow and total economic wealth (the weak sustainability paradigm), in relation to the sustainability of the ecosystem, which supports livelihoods and well-being in the broader sense (strong sustainability).
In 2012, the UN Statistical Commission adopted an international statistical standard called, the “System of Environmental-Economic Accounting Central Framework” (SEEA CF). The SEEA CF covers only items for which enough experience exists to be proposed for implementation by national statistical offices. A second volume on SEEA-Experimental Ecosystem Accounting (SEEA-EEA) was added in 2013 to supplement the SEEA CF with a research agenda and the development of tests. Experiments of the SEEA-EEA are developing at the initiative of the World Bank (WAVES), UN Environment Programme (VANTAGE, ProEcoServ), or the UN Convention on Biological Diversity (CBD) (SEEA-Ecosystem Natural Capital Accounts-Quick Start Package [ENCA-QSP]).
Beside the SEEA and in relation to it, other environmental accounting frameworks have been developed for specific purposes, including material flow accounting (MFA), which is now a regular framework at the Organisation for Economic Co-operation and Development (OECD) to report on the Green Growth strategy, the Intergovernmental Panel on Climate Change (IPCC) guidelines for the the UN Framework Convention on Climate Change (UNFCCC), reporting greenhouse gas emissions and carbon sequestration. Can be considered as well the Ecological Footprint accounts, which aim at raising awareness that our resource use is above what the planet can deliver, or the Millennium Ecosystem Assessment of 2005, which presents tables and an overall assessment in an accounting style. Environmental accounting is also a subject of interest for business, both as a way to assess impacts—costs and benefits of projects—and to define new accounting standards to assess their long term performance and risks.
Article
Environmental Accounting and the Management Challenge
Roger L. Burritt, Stefan Schaltegger, and Katherine L. Christ
There is a need to achieve sustainability through development of economies and companies that operate in the safe operating space of planetary boundaries and contribute to achieving the United Nations Sustainable Development Goals. This requires that decision makers are informed about the state of the natural environment, the environmental impacts being caused, and the effectiveness of improvement measures. Environmental accounting focuses on such environmental issues. It informs decision makers about combined environmental and economic matters and supports improvement processes. Environmental accounts at the national and regional macro level are mostly focused on the environmental condition and changes in condition over time. In contrast, company environmental accounting at the micro level either focuses on reporting on the overall impact in the past, providing detailed internal information for managers to address key problem areas, or identifying aspects for improvement. Transdisciplinary research helps to address the economic and management challenge of linking company-related micro level accounts and activities with macro level environmental objectives.
Article
Environmental Benefits and Concerns of Center-Pivot Irrigation
Leonor Rodriguez Sinobas
Center-pivot irrigation systems started in the United States in the mid-20th century as an irrigation method which surpassed the traditional surface irrigation methods. At that time, they had the potential to bring about higher irrigation efficiencies with less water consumption although their requirements in energy were higher too. Among their benefits, it is highlighted the feasibility to control water management as well as the application of agro-chemicals dissolved in the irrigation water and thus, center-pivot irrigation systems have spread worldwide. Nevertheless, since the last decade of the 20th century, they are facing actual concerns regarding ecosystem sustainability and water and energy efficiencies. Likewise, the 21st century has brought about the cutting edge issue “precision irrigation” which has made feasible the application of water, fertilizers, and chemicals as the plant demands taking into account variables such as: sprinkler´s pressure, terrain topography, soil variability, and climatic conditions. Likewise, it could be adopted to deal with the current key issues regarding the sustainability and efficiency of the center-pivot irrigation to maintain the agro-ecosystems but still, other issues such as the organic matter incorporation are far to be understood and they will need further studies.
Article
Environmental Change, Migration, and Population Health
Celia McMichael
Global environmental change amplifies and creates pressures that shape human migration. In the 21st century, there has been increasing focus on the complexities of migration and environmental change, including forecasts of the potential scale and pace of so-called environmental migration, identification of geographic sites of vulnerability, policy implications, and the intersections of environmental change with other drivers of human migration. Migration is increasingly viewed as an adaptive response to climatic and environmental change, particularly in terms of livelihood vulnerability and risk diversification. Yet the adaptive potential of migration will be defined in part by health outcomes for migrating populations. There has been limited examination, however, of the health consequences of migration related to environmental change.
Migration related to environmental change includes diverse types of mobility, including internal migration to urban areas, cross-border migration, forced displacement following environmental disaster, and planned relocation—migration into sites of environmental vulnerability; much-debated links between environmental change, conflict, and migration; immobile or “trapped” populations; and displacement due to climate change mitigation and decarbonization action. Although health benefits of migration may accrue, such as increased access to health services or migration away from sites of physical risk, migration—particularly irregular (undocumented) migration and forced displacement—can amplify vulnerabilities and present risks to health and well-being. For diverse migratory pathways, there is the need to anticipate, respond to, and ameliorate population health burdens among migrants.
Article
Environmental Degradation: Estimating the Health Effects of Ambient PM2.5 Air Pollution in Developing Countries
Ernesto Sánchez-Triana, Bjorn Larsen, Santiago Enriquez, and Andreia Costa Santos
Air pollution of fine particulates (PM2.5) is a leading cause of mortality worldwide. It is estimated that ambient PM2.5 air pollution results in between 4.1 million and 8.9 million premature deaths annually. According to the World Bank, the health effects of ambient PM2.5 air pollution had a cost of $6.4 trillion in purchasing power parity (PPP) adjusted dollars in 2019, equivalent to 4.8% of global gross domestic product (PPP adjusted) that year.
Estimating the health effects and cost of ambient PM2.5 air pollution involves three steps: (1) estimating population exposure to pollution; (2) estimating the health effects of such exposure; and (3) assigning a monetary value to the illnesses and premature deaths caused by ambient air pollution.
Estimating population exposure to ambient PM2,5 has gone from predominantly using ground level monitoring data mainly in larger cities to estimates of nationwide population weighted exposures based on satellite imagery and chemical transport models along with ground level monitoring data. The Global Burden of Disease 2010 (GBD 2010) provided for the first time national, regional and global estimates of exposures to ambient PM2.5. The GBD exposure estimates have also evolved substantially from 2010 to 2019, especially national estimates in South Asia, the Middle East and North Africa, Sub-Saharan Africa and Latin America and the Caribbean.
Estimation of health effects of ambient PM2.5 has also undergone substantial developments during the last two decades. These developments involve: i) going from largely estimating health effects associated with variations in daily exposures to estimating health effects of annual exposure; ii) going from estimating all-cause mortality or mortality from broad disease categories (i.e., cardiopulmonary diseases) to estimating mortality from specific diseases; and iii) being able to estimate health effects over a wide range of exposure that reflect ambient and household air pollution exposure levels in low- and middle-income countries.
As to monetary valuation of health effects of ambient air pollution, estimates in most low- and middle-income countries still rely on benefit transfer of values of statistical life (VSL) from high-income countries.
Article
Environmental Degradation, Tropical Diseases, and Economic Development
John Luke Gallup
It’s complicated. Tropical diseases have unusually intricate life cycles because most of them involve not only a human host and a pathogen, but also a vector host. The diseases are predominantly tropical due to their sensitivity to local ecology, usually due to the vector organism. The differences between the tropical diseases mean that they respond to environmental degradation in various ways that depend on local conditions. Urbanization and water pollution tend to limit malaria, but deforestation and dams can exacerbate malaria and schistosomiasis. Global climate change, the largest environmental change, will likely extend the range of tropical climate conditions to higher elevations and near the limits of the tropics, spreading some diseases, but will make other areas too dry or hot for the vectors. Nonetheless, the geographical range of tropical diseases will be primarily determined by public health efforts more than climate. Early predictions that malaria will spread widely because of climate change were flawed, and control efforts will probably cause it to diminish further. The impact of human disease on economic development is hard to pin down with confidence. It may be substantial, or it may be misattributed to other influences. A mechanism by which tropical disease may have large development consequences is its deleterious effects on the cognitive development of infants, which makes them less productive throughout their lives.
Article
Environmental Economic Ethics
Roldan Muradian
Environmental economic ethics refers to the moral philosophy underlying the interaction between economic processes and the natural environment. The ethical foundations shaping the way the economy interacts with nature vary greatly, depending on culture and the historical period. Nonetheless, current economic thinking and practice is dominated by utilitarianism, a philosophical stream consolidated in Western culture in the late 18th century. A utilitarian way to conceive and deal with the natural world and other humans can be identified as the ultimate cause of the current global environmental crisis. Even though ecological economics, as a field, has tried to overcome some of the drawbacks of utilitarianism when applied to the study of sustainability problems from an economic perspective, this school of thought remains essentially within the utilitarian paradigm. However, recent changes in social values, moving away from utilitarianism, are creating new opportunities for changing the philosophical and ethical foundations of ecological economics thinking and practice. The global movement for the rights of nature is an example of such a societal shift. An overhaul of the current allocation of rights can be a first step toward less suffering among humans, as well as a more peaceful relationship between humans and the natural environment. The economic implications of adopting the rights of nature paradigm are vast and wide. They include the thriving of new forms of property rights, new ways of allocating responsibilities and liabilities among social groups, and the acknowledgement of the territory as a key dimension for caring about in human economic development.
Article
Environmental Economic Instruments in Mexico
Marisol Rivera-Planter, Carlos Muñoz-Piña, and Mariza Montes de Oca
This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Environmental Science. Please check back later for the full article.
While most attention on the use of economic instruments for environmental protection has centered on their applications in industrialized countries, middle-income countries have made important inroads as well. Among them, Mexico stands out for its application to the agenda of a wide array of green and brown issues. Starting in 2001, with the introduction of fees to access natural protected areas, followed in 2003, with the establishment of the Payment for Ecosystems Services program for forests, and then in 2014, the introduction of the environmental tax on pesticides, the use of complementary price signals through the fiscal system has sought to influence, in a decentralized manner, the decisions of both consumers and resource owners towards protecting key elements of Mexico’s natural capital. As the central promise from economic instruments is to reduce compliance costs of reaching a certain goal by providing flexibility on how to meet individual obligations, the use of market-based mechanisms in regulations has also been explored with some success in Mexico. Partial incorporation of such a mechanism was applied to the design of its national Federal Fuel Efficiency standards for automobiles, by redefining compliance as meeting a corporate average standard starting from 2006 onwards. More recently, full use of market mechanisms was introduced, in 2016, into the strategy to reach Mexico’s Clean Energy requirement goals. The demonstration by utilities of compliance with the milestone of the national 2024 goal of 35% share of clean energy in power generation can be done either by holding or purchasing Clean Energy Certificates in their secondary market. This allows utilities to separate the decision to purchase energy at the lowest cost, and to meet environmental requirements, also at their lowest cost.
Both tax and market mechanisms are converging with Mexico’s Climate Change policy. The Fiscal Reform of 2014 introduced Mexico’s first explicit carbon tax in the form of an excise tax applied to fossil fuels, just as its G20 commitments to phase-out negative carbon pricing (i.e., fossil fuel subsidies) were being fulfilled. With price signals pushing towards more energy efficiency and a lower carbon footprint for the economy, Mexico is on the right track for carbon pricing and is showing leadership at a global scale. It will be interesting to observe how this will mix with a proposed cap-and-trade carbon mechanism, obviously touted as a complementary instrument. The establishment of such a mechanism to meet the emission reduction goals of Mexico’s Climate Change legislation and international commitments is the subject of intense debate and analysis. It represents an interesting decision point for a middle-income country such as Mexico, where all costs are local in nature, the emissions per capita are at the world’s average, and indirect benefits of the energy transition are only partial. In the political economy debate, the linkage to international markets, such as California and Quebec, is not only an option but a central motivation to launch the market, as gains from trade are the driving force.
Article
Environmental Economics and the Anthropocene
V. Kerry Smith
Geologists’ reframing of the global changes arising from human impacts can be used to consider how the insights from environmental economics inform policy under this new perspective. They ask a rhetorical question. How would a future generation looking back at the records in the sediments and ice cores from today’s activities judge mankind’s impact? They conclude that the globe has entered a new epoch, the Anthropocene. Now mankind is the driving force altering the Earth’s natural systems. This conclusion, linking a physical record to a temporal one, represents an assessment of the extent of current human impact on global systems in a way that provides a warning that all policy design and evaluation must acknowledge that the impacts of human activity are taking place on a planetary scale. As a result, it is argued that national and international environmental policies need to be reconsidered. Environmental economics considers the interaction between people and natural systems. So it comes squarely into conflict with conventional practices in both economics and ecology. Each discipline marginalizes the role of the other in the outcomes it describes. Market and natural systems are not separate. This conclusion is important to the evaluation of how (a) economic analysis avoided recognition of natural systems, (b) the separation of these systems affects past assessments of natural resource adequacy, and (c) policy needs to be redesigned in ways that help direct technological innovation that is responsive to the importance of nonmarket environmental services to the global economy and to sustaining the Earth’s living systems.
Article
Environmental Economics and Uncertainty: Review and a Machine Learning Outlook
Ruda Zhang, Patrick Wingo, Rodrigo Duran, Kelly Rose, Jennifer Bauer, and Roger Ghanem
Economic assessment in environmental science means measuring and evaluating environmental impacts, adaptation, and vulnerability. Integrated assessment modeling (IAM) is a unifying framework of environmental economics, which attempts to combine key elements of physical, ecological, and socioeconomic systems. The first part of this article reviews the literature on the IAM framework: its components, relations between the components, and examples.
For such models to inform environmental decision-making, they must quantify the uncertainties associated with their estimates. Uncertainty characterization in integrated assessment varies by component models: uncertainties associated with mechanistic physical models are often assessed with an ensemble of simulations or Monte Carlo sampling, while uncertainties associated with impact models are evaluated by conjecture or econometric analysis. The second part of this article reviews the literature on uncertainty in integrated assessment, by type and by component.
Probabilistic learning on manifolds (PLoM) is a machine learning technique that constructs a joint probability model of all relevant variables, which may be concentrated on a low-dimensional geometric structure. Compared to traditional density estimation methods, PLoM is more efficient especially when the data are generated by a few latent variables. With the manifold-constrained joint probability model learned by PLoM from a small, initial sample, manifold sampling creates new samples for evaluating converged statistics, which helps answer policy-making questions from prediction, to response, and prevention. As a concrete example, this article reviews IAMs of offshore oil spills—which integrate environmental models, transport models, spill scenarios, and exposure metrics—and demonstrates the use of manifold sampling in assessing the risk of drilling in the Gulf of Mexico.
Article
Environmental Economics of Pollination
Antoine Champetier
The pollination of crops by domesticated bees and wild pollinators is easily and often imagined as an accidental but essential process in agriculture. The notion that pollinators are overlooked despite their essential role in food production is widespread among the general public, as well as in policy debates concerning all issues related to pollinators, ranging from regulation of pesticides to conservation of habitat for wild bees, to support of beekeeping as an industry or as a hobby. Meade was the first to formalize this notion by making pollination a canonical example of beneficial externality in economics and arguing that subsidies should be established to ensure that honeybees are provided in optimal numbers to pollinate crops. In the first two decades of the 21st century, the same argument, but this time focusing on wild pollinators, has been proposed and supported by a large and growing literature in conservation ecology.
However, a thorough review of contributions on the economics of pollination reveals several misconceptions behind the appealing fable of pollination externalities. The most striking rebuttal of Meade’s argument comes from the study of pollination markets, where beekeepers and crop growers engage in voluntary transactions called pollination contracts. A small economics literature formalizes the issue of incentives solved by these transactions and provides a detailed empirical analysis of many complex aspects, such as the establishment of standards for the monitoring of bee densities or the impact of seasonality of blooms and bee population dynamics on pollination prices.
Outside pollination markets, economists have made rather sparse and partial contributions to several other important issues related to pollination in agriculture, such as valuation of pollination services, conservation of wild pollinators, and regulation of pesticides that impact pollinators. On these topics, studies have largely been published in non-economics journals and economists stand to make valuable contributions by applying and popularizing the concepts of incentive design, information costs, and other key insights of environmental economics in the study of pollination.
Article
Environmental Geology and Sustainability of Deltas
Enuvie G. Akpokodje
Deltas have played a significant role in the growth of human civilization because of their unique economic and ecological importance. However, deltas are becoming increasingly vulnerable because of the impact of intensive human developmental activities, high population and urban growth, subsidence, climate change, and the associated rise in sea level. The trapping of sediments by dams is another major threat to the long-term stability and sustainability of deltas. The emergence and global acceptance of the concept of sustainable development in the 1980s led to the advent of several multidisciplinary and applied fields of research, including environmental science, environmental geology, and sustainability science. Environmental geology focuses on the application of geologic knowledge and principles to broad-ranging environmental and socioeconomic issues, including the specific problems confronting deltas. The key environmental geologic challenges in deltas (especially urban delta areas) are: increasing exposure and vulnerability to geologic hazards (flooding, cyclones, etc.), rise in sea level, decreasing sediment load supply, contamination of soil and water resources, provision of adequate drinking water, and safe waste disposal. The application of geologic knowledge and principles to these challenges requires consideration of the critical geologic controls, such as the geological history, stratigraphy, depositional environment, and the properties of the alluvial sediments. Until recently, most of the traditional engineered solutions in the management of deltas were designed to keep out water (fighting nature), typically without adequate geological/hydrological input, rather than building with nature. Recent innovative approaches to delta management involve a paradigm shift from the traditional approach to a more integrated, holistic, adaptive, and ecologically based philosophy that incorporates some critical geological and hydrological perspectives, for instance, widening and deepening rivers and flood plains as well as constructing secondary channels (i.e., making more room for water). A key challenge, however, is the establishment of a close and functional communication between environmental geologists and all other stakeholders involved in delta management. In addition, there is growing global consensus regarding the need for international cooperation that cuts across disciplines, sectors, and regions in addressing the challenges facing deltas. Integrating good policy and governance is also essential.
Article
Environmental Health Impacts of Natural and Man-Made Chemicals
Michael N. Moore
Humans have been exposed to naturally occurring toxic chemicals and materials over the course of their existence as a species. These materials include various metals, the metalloid arsenic, and atmospheric combustion particulates, as well as bacterial, fungal, algal, and plant toxins. They have also consumed plants that contain a host of phytochemicals, many of which are believed to be beneficial, such as plant polyphenols. People are exposed to these various substances from a number of sources. The pathways of exposure include air, water, groundwater, soil (including via plants grown in toxic soils), and various foods, such as vegetables, fruit, fungi, seafood and fish, eggs, wild birds, marine mammals, and farmed animals.
An overview of the various health benefits, hazards and risks relating to the risks reveals the very wide variety of chemicals and materials that are present in the natural environment and can interact with human biology, to both its betterment and detriment.
The major naturally occurring toxic materials that impact human health include metals, metalloids (e.g., arsenic), and airborne particulates. The Industrial Revolution is a major event that increased ecosystem degradation and the various types and duration of exposure to toxic materials. The explosions in new organic and organometallic products that were and still are produced over the past two centuries have introduced new toxicities and associated pathologies. The prevalence in the environment of harmful particulates from motor-vehicle exhaust emissions, road dust and tire dust, and other combustion processes must also be considered in the broader context of air pollution.
Natural products, such as bacterial, fungal, algal, and plant toxins, can also have adverse effects on health. At the same time, plant-derived phytochemicals (i.e., polyphenols, terpenoids, urolithins, and phenolic acids, etc.) also have beneficial and potential beneficial effects, particularly with regard to their anti-inflammatory effects. Because inflammation is associated with most disease processes, phytochemicals that have antioxidant and anti-inflammatory properties are of great interest as potential nutraceuticals. These potentially beneficial compounds may help to combat various cancers; autoimmune conditions; neurodegenerative diseases, including dementias; and psychotic conditions, such as depression, and are also essential micronutrients that promote health and well-being. The cellular and molecular mechanisms in humans that phytochemicals modulate, or otherwise interact with, to improve human health are now known.
In the early 21st century, some of the current pollution issues are legacy problems from past industrialization, such as mercury and persistent organic pollutants (POPs). These POPs include many organochlorine compounds (e.g., polychlorinated biphenyls, pesticides, polychlorinated and polybrominated dibenzo-dioxans and -furans), as well as polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs, and others. The toxicity of chemical mixtures is still a largely unknown problem, particularly with regard to possible synergies. The continuing development of new organic chemicals and nanomaterials is an important environmental health issue; and the need for vigilance with respect to their possible health hazards is urgent. Nanomaterials, in particular, pose potential novel problems in the context of their chemical properties; humans have not previously been exposed to these types of materials, which may well be able to exploit gaps in our existing cellular protection mechanisms.
Hopefully, future advances in knowledge emerging from combinatorial chemistry, molecular modeling, and predictive quantitative structure-activity relationships (QSARs), will enable improved identification of the potential toxic properties of novel industrial organic chemicals, pharmaceuticals, and nanomaterials before they are released into the natural environment, and thus prevent a repetition of past disastrous events.
Article
Environmental Health Research: Identifying the Context and the Needs, and Choosing Priorities
George Morris, Marco Martuzzi, Lora Fleming, Francesca Racioppi, and Srdan Matic
Adequate funding, careful planning, and good governance are central to delivering quality research in any field. Yet, the strategic directions for research, the mechanisms through which topics emerge, and the priorities assigned are equally deserving of attention. The need to understand the role played by the environment and to manage the physical environment and the human activities which bear upon it in pursuit of health, well-being, and equity are long established. These imperatives drive environmental health research as a key branch of scientific inquiry.
Targeted research over many years, applying established methods, has informed society’s understanding of the toxic, infectious, allergenic, and physical threats to health from our physical surroundings and how these may be managed. Essentially hazard-focused research continues to deliver policy-relevant findings while simultaneously posing questions to be addressed through further research. Environmental health in the 21st century is, however, confronted by additional challenges of a rather different character. These include the need to understand, in a better and more policy-relevant way, the contributions of the environment to health and equity in complex interaction with other societal and individual-level influences (a so-called socioecological model). Also important are the potential of especially green and blue natural environments to improve health and well-being and promote equity, and the health implications of new approaches to production and consumption, such as the circular economy.
Such challenges add breadth, depth, and richness to the environmental health research agenda, but when combined with the existential and public health threat of humanity’s detrimental impact on the Earth’s systems, they entail a need for new and better strategies for scientific inquiry. As we confront the challenges and uncertainties of the Anthropocene, the complexity expands, the stakes become sky-high, and diverse interests and values clash. Thus, the pressure on environmental health researchers to evolve and engage with stakeholders and reach out to the widest constituency of policy and practice has never been greater, nor has the need to organize to deliver.
A disparate range of contextual factors have become pertinent when scoping the now significantly extended, territory for environmental health research. Moreover, the challenges of prioritizing among the candidate topics for investigation have scarcely been greater.
Article
The Environmental History of Russia
Stephen Brain
Russian environmental history is a new field of inquiry, with the first archivally based monographs appearing only in the last years of the 20th century. Despite the field’s youth, scholars studying the topic have developed two distinct and contrasting approaches to its central question: How should the relationship between Russian culture and the natural world be characterized? Implicit in this question are two others: Is the Russian attitude toward the non-human world more sensitive than that which prevails in the West; and if so, is the Russian environment healthier or more stable than that of the United States and Western Europe? In other words, does Russia, because of its traditional suspicion of individualism and consumerism, have something to teach the West? Or, on the contrary, has the Russian historical tendency toward authoritarianism and collectivism facilitated predatory policies that have degraded the environment? Because environmentalism as a political movement and environmental history as an academic subject both emerged during the Cold War, at a time when the Western social, political, and economic system vied with the Soviet approach for support around the world, the comparative (and competitive) aspect of Russian environmental history has always been an important factor, although sometimes an implicit one. Accordingly, the existing scholarly works about Russian environmental history generally fall into one of two camps: one very critical of the Russian environmental record and the seeming disregard of the Russian government for environmental damage, and a somewhat newer group of works that draw attention to the fundamentally different concerns that motivate Russian environmental policies. The first group emphasizes Russian environmental catastrophes such as the desiccated Aral Sea, the eroded Virgin Lands, and the public health epidemics related to the severely polluted air of Soviet industrial cities. The environmental crises that the first group cites are, most often, problems once prevalent in the West, but successfully ameliorated by the environmental legislation of the late 1960s and early 1970s. The second group, in contrast, highlights Russian environmental policies that do not have strict Western analogues, suggesting that a thorough comparison of the Russian and Western environmental records requires, first of all, a careful examination of what constitutes environmental responsibility.
Article
The Environmental History of the Antarctic
Sebastian Grevsmühl
The environmental history of the polar regions, and in particular of Antarctica, is a rather recent area of inquiry that is in many ways still in its infancy. As a truly multidisciplinary research field, environmental history draws much inspiration from a large diversity of fields of historical and social research, including economic history, diplomatic history, cultural history, the history of explorations, and science and technology studies. Although overarching book-length studies on the environmental history of Antarctica are still rare, historical scholars have already conducted many in-depth case studies related mostly to three major interrelated research topics: Antarctic governance, natural resource exploitation, and tourism. These recent historical efforts, carried out mostly by a new generation of historians, have thus far allowed the proposal of several powerful counternarratives, challenging the frequent yet erroneous assertion that environmental protection and conservation were completely absent from Antarctic affairs before the 1970s. In so doing, environmental historians started offering a much more complex and nuanced account of what is frequently referred to as the “greening” of Antarctica, going well beyond “declensionist” narratives and conservation success stories that commonly pervade not only environmental histories but also public discourse. Indeed, all recent historical studies agree that there is nothing inevitable about the “greening” of Antarctica, nor are conservation and environmental protection its natural destiny. Science, politics, imperialism, capitalism, and imaginaries all have played their part in this important history, a history that remains still largely to be written.
Article
Environmental History of the Mississippi River and Delta
Christopher Morris
The Mississippi River, the longest in North America, is really two rivers geophysically. The volume is less, the slope steeper, the velocity greater, and the channel straighter in its upper portion than in its lower portion. Below the mouth of the Ohio River, the Mississippi meanders through a continental depression that it has slowly filled with sediment over many millennia. Some limnologists and hydrologists consider the transitional middle portion of the Mississippi, where the waters of its two greatest tributaries, the Missouri and Ohio rivers, join it, to comprise a third river, in terms of its behavioral patterns and stream and floodplain ecologies.
The Mississippi River humans have known, with its two or three distinct sections, is a relatively recent formation. The lower Mississippi only settled into its current formation following the last ice age and the dissipation of water released by receding glaciers. Much of the current river delta is newer still, having taken shape over the last three to five hundred years.
Within the lower section of the Mississippi are two subsections, the meander zone and the delta. Below Cape Girardeau, Missouri, the river passes through Crowley’s Ridge and enters the wide and flat alluvial plain. Here the river meanders in great loops, often doubling back on itself, forming cut offs that, if abandoned by the river, forming lakes. Until modern times, most of the plain, approximately 35,000 square miles, comprised a vast and rich—rich in terms of biomass production—ecological wetland sustained by annual Mississippi River floods that brought not just water, but fertile sediment—topsoil—gathered from across much of the continent. People thrived in the Mississippi River meander zone. Some of the most sophisticated indigenous cultures of North America emerged here. Between Natchez, Mississippi, and Baton Rouge, Louisiana, at Old River Control, the Mississippi begins to fork into distributary channels, the largest of which is the Atchafalaya River. The Mississippi River delta begins here, formed of river sediment accrued upon the continental shelf. In the delta the land is wetter, the ground water table is shallower. Closer to the sea, the water becomes brackish and patterns of river sediment distribution are shaped by ocean tides and waves. The delta is frequently buffeted by hurricanes.
Over the last century and a half people have transformed the lower Mississippi River, principally through the construction of levees and drainage canals that have effectively disconnected the river from the floodplain. The intention has been to dry the land adjacent to the river, to make it useful for agriculture and urban development. However, an unintended effect of flood control and wetland drainage has been to interfere with the flood-pulse process that sustained the lower valley ecology, and with the process of sediment distribution that built the delta and much of the Louisiana coastline. The seriousness of the delta’s deterioration has become especially apparent since Hurricane Katrina, and has moved conservation groups to action. They are pushing politicians and engineers to reconsider their approach to Mississippi River management.