11-20 of 92 Results  for:

  • Agriculture and the Environment x
Clear all

Article

Economics of Climate Change Adaptation  

Babatunde O. Abidoye

To view climate change adaptation from an economic perspective requires a definition of adaptation, an economic framework in which to view adaptation, and a review of the literature on specific adaptations (especially in agriculture). A focus on tools for applying adaptation to developing countries highlights the difference between mitigation and the adaptation decision-making process. Mitigation decisions take a long-term perspective because carbon dioxide lasts for a very long time in the atmosphere. Adaptation decisions typically last the lifespan of the investments, so the time frame depends on the specific adaptation investment, but it is invariably short compared to mitigation choices, which have implications for centuries. The short time frame means that adaptation decisions are not plagued by the same uncertainty that plagues mitigation choices. Finally, most adaptation decisions are local and private, whereas mitigation is a global public decision. Private adaptation will occur even without large government programs. Public adaptations that require government assistance can mainly be made by existing government agencies. Adaptation does not require a global agreement.

Article

Prehistoric Agriculture in China: Food Globalization in Prehistory  

Giedrė Motuzaitė Matuzevičiūtė and Xinyi Liu

It is commonly recognised that farming activities initiated independently in different parts of the world between approximately 12,000 and 8,000 years ago. Two of such agricultural centres is situated in modern-day China, where systems based on the cultivation of plants and animal husbandry has developed. Recent investigations have shown that between 5000 and 1500 cal. bce, the Eurasian and African landmass underpinned a continental-scale process of food “globalisation of staple crops. In the narrative of food domestication and global food dispersal processes, China has played a particularly important role, contributing key staple food domesticates such as rice, broomcorn, and foxtail millet. The millets dispersed from China across Eurasia during the Bronze Age, becoming an essential food for many ancient communities. In counterpoise, southwest Asian crops, such as wheat or barley, found new habitats among the ancient populations of China, dramatically changing the course of its development. The processes of plant domestication and prehistoric agriculture in China have been a topic of extensive research, review, and discussion by many scholars around the world, and there is a great deal of literature on these topics. One of the consequences of these discoveries concerning the origins of agriculture in China has been to undermine the notion of a single centre of origin for civilisation, agriculture, and urbanism, which was a popular and widespread narrative in the past. It has become clear that agricultural centres of development in China were concurrent with, rather than after, the Fertile Crescent.

Article

Biochar: An Emerging Carbon Abatement and Soil Management Strategy  

Holly Morgan, Saran Sohi, and Simon Shackley

Biochar is a charcoal that is used to improve land rather than as a fuel. Biochar is produced from biomass, usually through the process of pyrolysis. Due to the molecular structure and strength of the chemical bonds, the carbon in biochar is in a stable form and not readily mineralized to CO2 (as is the fate of most of the carbon in biomass). Because the carbon in biochar derives (via photosynthesis) from atmospheric CO2, biochar has the potential to be a net negative carbon technology/carbon dioxide removal option. Biochar is not a single homogeneous material. Its composition and properties (including longevity) differ according to feedstock (source biomass), pyrolysis (production) conditions, and its intended application. This variety and heterogeneity have so far eluded an agreed methodology for calculating biochar’s carbon abatement. Meta-analyses increasingly summarize the effects of biochar in pot and field trials. These results illuminate that biochar may have important agronomic benefits in poorer acidic tropical and subtropical soils, with one study indicating an average 25% yield increase across all trials. In temperate soils the impact is modest to trivial and the same study found no significant impact on crop yield arising from biochar amendment. There is much complexity in matching biochar to suitable soil-crop applications and this challenge has defied development of simple heuristics to enable implementation. Biochar has great potential as a carbon management technology and as a soil amendment. The lack of technically rigorous methodologies for measuring recalcitrant carbon limits development of the technology according to this specific purpose.

Article

Water Security  

Claudia Sadoff, David Grey, and Edoardo Borgomeo

Water security has emerged in the 21st century as a powerful construct to frame the water objectives and goals of human society and to support and guide local to global water policy and management. Water security can be described as the fundamental societal goal of water policy and management. This article reviews the concept of water security, explaining the differences between water security and other approaches used to conceptualize the water-related challenges facing society and ecosystems and describing some of the actions needed to achieve water security. Achieving water security requires addressing two fundamental challenges at all scales: enhancing water’s productive contributions to human and ecosystems’ well-being, livelihoods and development, and minimizing water’s destructive impacts on societies, economies, and ecosystems resulting, for example, from too much (flood), too little (drought) or poor quality (polluted) water.

Article

Agroforestry and Its Impact in Southeast Asia  

Christopher Hunt

Research during the late 20th and early 21st centuries found that traces of human intervention in vegetation in Southeast Asian and Australasian forests started extremely early, quite probably close to the first colonization of the region by modern people around or before 50,000 years ago. It also identified what may be insubstantial evidence for the translocation of economically important plants during the latest Pleistocene and Early Holocene. These activities may reflect early experiments with plants which evolved into agroforestry. Early in the Holocene, land management/food procurement systems, in which trees were a very significant component, seem to have developed over very extensive areas, often underpinned by dispersal of starchy plants, some of which seem to show domesticated morphologies, although the evidence for this is still relatively insubstantial. These land management/food procurement systems might be regarded as a sort of precursor to agroforestry. Similar systems were reported historically during early Western contact, and some agroforest systems survive to this day, although they are threatened in many places by expansion of other types of land use. The wide range of recorded agroforestry makes categorizing impacts problematical, but widespread disruption of vegetational succession across the region during the Holocene can perhaps be ascribed to agroforestry or similar land-management systems, and in more recent times impacts on biodiversity and geomorphological systems can be distinguished. Impacts of these early interventions in forests seem to have been variable and locally contingent, but what seem to have been agroforestry systems have persisted for millennia, suggesting that some may offer long-term sustainability.

Article

A Socio-Hydrological Perspective on the Economics of Water Resources Development and Management  

Saket Pande, Mahendran Roobavannan, Jaya Kandasamy, Murugesu Sivapalan, Daniel Hombing, Haoyang Lyu, and Luuk Rietveld

Water quantity and quality crises are emerging everywhere, and other crises of a similar nature are emerging at several locations. In spite of a long history of investing in sustainable solutions for environmental preservation and improved water supply, these phenomena continue to emerge, with serious economic consequences. Water footprint studies have found it hard to change culture, that is, values, beliefs, and norms, about water use in economic production. Consumption of water-intensive products such as livestock is seen as one main reason behind our degrading environment. Culture of water use is indeed one key challenge to water resource economics and development. Based on a review of socio-hydrology and of societies going all the way back to ancient civilizations, a narrative is developed to argue that population growth, migration, technology, and institutions characterize co-evolution in any water-dependent society (i.e., a society in a water-stressed environment). Culture is proposed as an emergent property of such dynamics, with institutions being the substance of culture. Inclusive institutions, strong diversified economies, and resilient societies go hand in hand and emerge alongside the culture of water use. Inclusive institutions, in contrast to extractive institutions, are the ones where no small group of agents is able to extract all the surplus from available resources at the cost of many. Just as values and norms are informed by changing conditions resulting from population and economic growth and climate, so too are economic, technological, and institutional changes shaped by prevailing culture. However, these feedbacks occur at different scales—cultural change being slower than economic development, often leading to “lock-ins” of decisions that are conditioned by prevailing culture. Evidence-based arguments are presented, which suggest that any attempt at water policy that ignores the key role that culture plays will struggle to be effective. In other words, interventions that are sustainable endogenize culture. For example, changing water policy, for example, by taking water away from agriculture and transferring it to the environment, at a time when an economy is not diversified enough to facilitate the needed change in culture, will backfire. Although the economic models (and policy based on them) are powerful in predicting actions, that is, how people make choices based on how humans value one good versus the other, they offer little on how preferences may change over time. The conceptualization of the dynamic role of values and norms remains weak. The socio-hydrological perspective emphasizes the need to acknowledge the often-ignored, central role of endogenous culture in water resource economics and development.

Article

Agricultural Energy Demand and Use  

David Roland-Holst

This overview article examines the historical and technical relationship between agrifood supply chains and energy services. Because agriculture is the original environmental science, all technological change in food production has environmental implications, but these are especially serious in the context of conventional energy use. Agrifood sustainability is of paramount importance to us all, and this will require lower carbon pathways for agriculture.

Article

Ancient and Traditional Agriculture in South America: Tropical Lowlands  

Glenn H. Shepard Jr., Charles R. Clement, Helena Pinto Lima, Gilton Mendes dos Santos, Claide de Paula Moraes, and Eduardo Góes Neves

The tropical lowlands of South America were long thought of as a “counterfeit paradise,” a vast expanse of mostly pristine rainforests with poor soils for farming, limited protein resources, and environmental conditions inimical to the endogenous development of hierarchical human societies. These misconceptions derived largely from a fundamental misunderstanding of the unique characteristics of ancient and indigenous farming and environmental management in lowland South America, which are in turn closely related to the cultural baggage surrounding the term “agriculture.” Archaeological and archaeobotanical discoveries made in the early 21st century have overturned these misconceptions and revealed the true nature of the ancient and traditional food production systems of lowland South America, which involve a complex combination of horticulture, agroforestry, and the management of non-domesticated or incipiently domesticated species in cultural forest landscapes. In this sense, lowland South America breaks the mould of the Old World “farming hypothesis” by revealing cultivation without domestication and domestication without agriculture, a syndrome that has been referred to as “anti-domestication”. These discoveries have contributed to a better understanding of the cultural history of South America, while also suggesting new paradigms of environmental management and food production for the future of this critical and threatened biome.

Article

Agricultural Origins and Their Consequences in Southwestern Asia  

Alan H. Simmons

Despite millennia of success as hunters and gatherers, some human groups made a monumental transition to agricultural economies and more sedentary lifeways, broadly referred to as the “Neolithic.” This major tipping point in human history first occurred around 12,000 years ago in Southwest Asia and the eastern Mediterranean, where it is also the best documented. Much research has focused on the origins of agriculture, asking questions about why this event occurred after so much success at hunting and gathering. While early investigations concentrated on the economic significance of the Neolithic, studies in the late 20th century and continuing into the early 21st century also address what are perhaps more significant issues related to social, ritual, political, and ecological aspects of the Neolithic. Equally important is a focus on not only why the Neolithic first occurred, but also its consequences. These often are addressed in relation to the subsequent development of so-called civilizations and the environmental and social impacts that these had, but increasingly there are investigations of the consequences of the Neolithic within itself. These consequences refer to Neolithic societies on both the Near Eastern mainlands and adjacent Mediterranean islands. These include not only economic consequences but also ones related to social organization and complexity, trade, and health and disease. What is apparent is that consequential events during the Neolithic were not linear, following a predictable path. For example, there is strong evidence for substantial environmental deterioration during the Neolithic at sites such as ‘Ain Ghazal in Jordan, where adaptive responses may have included divisions of domestic animal and plant resources. However, in Cyprus, where the Neolithic is now known to be as early as it was on the mainlands, evidence is limited for severe ecological degradation throughout the period. Thus, Neolithic consequences must be examined from a broad perspective, considering both successes and failures.

Article

Adding Biodiversity to Agricultural Landscapes Through Ecology and Biotechnology  

David Still

Agriculture is practiced on 38% of the landmass on Earth, and having replaced natural ecosystems, it is the largest terrestrial biome on Earth. Agricultural biomes are typically focused on annual crops that are produced as a succession of genetically uniform monocultures. Compared to the ecosystems they replaced, agroecosystems provide fewer ecosystem functions and contain much less biodiversity. The large-scale conversion from natural lands to agriculture occurred centuries ago in the Old World (Africa, China, Europe, and India), but in many areas during the latter 20th and early 21st centuries, especially tropical areas with rich biodiversity, agriculture is an emerging industry. Here, displacement of natural ecosystems is also a late 20th-century occurrence, and much of it is ongoing. Regardless of where or when agriculture was established, biodiversity declined and ecosystem services were eroded. Agricultural practices are the second largest contributor to biodiversity loss, due to the loss of habitat, competition for resources, and pesticide use. Most (~96%) of the land used to produce crops is farmed using conventional methods, while smaller percentages are under organic production (~2%) or are producing biotech crops (~4%). Regardless of how agriculture is practiced, it exacts a toll on biodiversity and ecosystem services. While organic agriculture embraces many ecological principals in producing food, it fails to recognize the value of biotechnology as a tool to reduce the environmental impact of agriculture. Herbicide- and/or insect-resistant crops are the most widely planted biotech crops worldwide. Biotech crops in general, but especially insect-resistant crops, reduce pesticide use and increase biodiversity. The widespread adoption of glyphosate-resistant crops increased the use of this herbicide, and resistance evolved in weeds. On the other hand, glyphosate has less environmental impacts than other herbicides. Because of the limited scale of biotech production, it will not have large impacts on mitigating the effects of agriculture on biodiversity and ecosystem services. To have any hope of reducing the environmental impact of agriculture, agro-ecology principals and biotechnology will need to be incorporated. Monetizing biodiversity and ecosystem services through incorporation into commodity prices will incentivize producers to be part of the biodiversity solution. A multi-level biodiversity certification is proposed that is a composite score of the biodiversity and ecosystem services of an individual farm and the growing region were the food is produced. Such a system would add value to the products from farms and ranches proportionate to the level by which their farm and region provides biodiversity and ecosystem services as the natural ecosystem it replaced.