331-340 of 342 Results

Article

Ecosystem Services  

Leon C. Braat

The concept of ecosystem services considers the usefulness of nature for human society. The economic importance of nature was described and analyzed in the 18th century, but the term ecosystem services was introduced only in 1981. Since then it has spurred an increasing number of academic publications, international research projects, and policy studies. Now a subject of intense debate in the global scientific community, from the natural to social science domains, it is also used, developed, and customized in policy arenas and considered, if in a still somewhat skeptical and apprehensive way, in the “practice” domain—by nature management agencies, farmers, foresters, and corporate business. This process of bridging evident gaps between ecology and economics, and between nature conservation and economic development, has also been felt in the political arena, including in the United Nations and the European Union (which have placed it at the center of their nature conservation and sustainable use strategies). The concept involves the utilitarian framing of those functions of nature that are used by humans and considered beneficial to society as economic and social services. In this light, for example, the disappearance of biodiversity directly affects ecosystem functions that underpin critical services for human well-being. More generally, the concept can be defined in this manner: Ecosystem services are the direct and indirect contributions of ecosystems, in interaction with contributions from human society, to human well-being. The concept underpins four major discussions: (1) Academic: the ecological versus the economic dimensions of the goods and services that flow from ecosystems to the human economy; the challenge of integrating concepts and models across this paradigmatic divide; (2) Social: the risks versus benefits of bringing the utilitarian argument into political debates about nature conservation (Are ecosystem services good or bad for biodiversity and vice versa?); (3) Policy and planning: how to value the benefits from natural capital and ecosystem services (Will this improve decision-making on topics ranging from poverty alleviation via subsidies to farmers to planning of grey with green infrastructure to combining economic growth with nature conservation?); and (4) Practice: Can revenue come from smart management and sustainable use of ecosystems? Are there markets to be discovered and can businesses be created? How do taxes figure in an ecosystem-based economy? The outcomes of these discussions will both help to shape policy and planning of economies at global, national, and regional scales and contribute to the long-term survival and well-being of humanity.

Article

The Anthropocene  

Jan Zalasiewicz and Colin Waters

The Anthropocene hypothesis—that humans have impacted “the environment” but also changed the Earth’s geology—has spread widely through the sciences and humanities. This hypothesis is being currently tested to see whether the Anthropocene may become part of the Geological Time Scale. An Anthropocene Working Group has been established to assemble the evidence. The decision regarding formalization is likely to be taken in the next few years, by the International Commission on Stratigraphy, the body that oversees the Geological Time Scale. Whichever way the decision goes, there will remain the reality of the phenomenon and the utility of the concept. The evidence, as outlined here, rests upon a broad range of signatures reflecting humanity’s significant and increasing modification of Earth systems. These may be visible as markers in physical deposits in the form of the greatest expansion of novel minerals in the last 2.4 billion years of Earth history and development of ubiquitous materials, such as plastics, unique to the Anthropocene. The artefacts we produce to live as modern humans will form the technofossils of the future. Human-generated deposits now extend from our natural habitat on land into our oceans, transported at rates exceeding the sediment carried by rivers by an order of magnitude. That influence now extends increasingly underground in our quest for minerals, fuel, living space, and to develop transport and communication networks. These human trace fossils may be preserved over geological durations and the evolution of technology has created a new technosphere, yet to evolve into balance with other Earth systems. The expression of the Anthropocene can be seen in sediments and glaciers in chemical markers. Carbon dioxide in the atmosphere has risen by ~45 percent above pre–Industrial Revolution levels, mainly through combustion, over a few decades, of a geological carbon-store that took many millions of years to accumulate. Although this may ultimately drive climate change, average global temperature increases and resultant sea-level rises remain comparatively small, as yet. But the shift to isotopically lighter carbon locked into limestones and calcareous fossils will form a permanent record. Nitrogen and phosphorus contents in surface soils have approximately doubled through increased use of fertilizers to increase agricultural yields as the human population has also doubled in the last 50 years. Industrial metals, radioactive fallout from atomic weapons testing, and complex organic compounds have been widely dispersed through the environment and become preserved in sediment and ice layers. Despite radical changes to flora and fauna across the planet, the Earth still has most of its complement of biological species. However, current trends of habitat loss and predation may push the Earth into the sixth mass extinction event in the next few centuries. At present the dramatic changes relate to trans-global species invasions and population modification through agricultural development on land and contamination of coastal zones. Considering the entire range of environmental signatures, it is clear that the global, large and rapid scale of change related to the mid-20th century is the most obvious level to consider as the start of the Anthropocene Epoch.

Article

The Oceans and Human Health  

Lora Fleming, Michael Depledge, Niall McDonough, Mathew White, Sabine Pahl, Melanie Austen, Anders Goksoyr, Helena Solo-Gabriele, and John Stegeman

The interdisciplinary study of oceans and human health is an area of increasing global importance. There is a growing body of evidence that the health of the oceans and that of humans are inextricably linked and that how we interact with and affect our oceans and seas will significantly influence our future on earth. Since the emergence of modern humans, the oceans have served as a source of culture, livelihood, expansion, trade, food, and other resources. However, the rapidly rising global population and the continuing alterations of the coastal environment are placing greater pressure on coastal seas and oceans. Negative human impacts, including pollution (chemical, microbial, material), habitat destruction (e.g., bottom trawling, dredging), and overfishing, affect not only ecosystem health, but also human health. Conversely, there is potential to promote human health and well-being through sustainable interactions with the coasts and oceans, such as the restoration and preservation of coastal and marine ecosystems. The study of oceans and human health is inherently interdisciplinary, bringing together the natural and social sciences as well as diverse stakeholder communities (including fishers, recreational users, private enterprise, and policymakers). Reviewing history and policy with regard to oceans and human health, in addition to known and potential risks and benefits, provides insights into new areas and avenues of global cooperation, with the possibility for collaboratively addressing the local and global challenges of our interactions with the oceans, both now and in the future.

Article

Ecological Effects of Environmental Stressors  

Bill Freedman

Regimes of environmental stress are exceedingly complex. Particular stressors exist within continua of intensity of environmental factors. Those factors interact with each other, and their detrimental effects on organisms are manifest only at relatively high or low strengths of exposure—in fact, many of them are beneficial at intermediate levels of intensity. Although a diversity of environmental factors is manifest at any time and place, only one or a few of them tend to be dominant as stressors. It is useful to distinguish between stressors that occur as severe events (disturbances) and those that are chronic in their exposure, and to aggregate the kinds of stressors into categories (while noting some degree of overlap among them). Climatic stressors are associated with extremes of temperature, solar radiation, wind, moisture, and combinations of these factors. They act as stressors if their condition is either insufficient or excessive, in comparison with the needs and comfort zones of organisms or ecosystem processes. Chemical stressors involve environments in which the availability of certain substances is too low to satisfy biological needs, or high enough to cause toxicity or another physiological detriment to organisms or to higher-level attributes of ecosystems. Wildfire is a disturbance that involves the combustion of much of the biomass of an ecosystem, affecting organisms by heat, physical damage, and toxic substances. Physical stress is a disturbance in which an exposure to kinetic energy is intense enough to damage organisms and ecosystems (such as a volcanic blast, seismic sea wave, ice scouring, or anthropogenic explosion or trampling). Biological stressors are associated with interactions occurring among organisms. They may be directly caused by such trophic interactions as herbivory, predation, and parasitism. They may also indirectly affect the intensity of physical or chemical stressors, as when competition affects the availability of nutrients, moisture, or space. Extreme environments are characterized by severe regimes of stressors, which result in relatively impoverished ecosystem development. This may be a consequence of either natural or anthropogenic stressors. If a regime of environmental stress intensifies, the resulting responses include a degradation of the structure and function of affected ecosystems and of ecological integrity more generally. In contrast, a relaxation of environmental stress allows some degree of ecosystem recovery.

Article

Ancient and Traditional Agriculture in South America: Highlands  

Geoffrey L. Taylor and Katherine L. Chiou

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Environmental Science. Please check back later for the full article. The Andean highland region of South America was a center for the domestication of crops and the development of novel agricultural intensification strategies. These advances provided the social and economic foundations for one of the largest pre-Hispanic states in the Americas—the Inca—as well as numerous preceding and contemporaneous cultures. The legacy created by Andean agriculturalists includes terraced and raised fields that remain in use today as well as globally consumed foods including chili pepper (Capsicum spp.), potato (Solanum tuberosum), and quinoa (Chenopodium quinoa). Research on modern forms of traditional agriculture in South America by ethnographers, geographers, and agronomists can be grouped into three general themes: (1) the physical, social, and ritual practices of farming; (2) the environmental impacts of farming; and (3) agrobiodiversity and genetic conservation of crop varieties. Due to conquest by European invaders in the 16th century and the resulting demographic collapse, aspects of native knowledge and traditions were lost. Consequently, much of what is known about pre-Hispanic traditional agricultural practices is derived from archaeological research. To farm the steep mountainous slopes in the quechua and suni zones, native Andean peoples developed a suite of field types ranging from rainfed sloping fields to irrigated bench terracing that flattened the ground to increase surface area, raised soil temperatures, and reduced soil erosion. In the high plains or puna zone, flat wetlands were transformed into a patchwork of alternating raised fields and irrigation canals. By employing this strategy, Andean peoples created microclimates that resisted frost, managed moisture availability, and improved soil nutrient quality. These agricultural approaches cannot be divorced from enduring Andean cosmological and social concepts such as the ayni and minka exchange-labor systems based on reciprocity and the ayllu, a lineage and community group that also integrates the land itself and the wakas (nonhuman agentive beings) that reside there with the people. To understand traditional agriculture in the highland Andes and how it supported large populations in antiquity, facilitated the rapid expansion of the Inca Empire, and created field systems that are still farmed sustainably by populations today, it is essential to examine not only the physical practices themselves, but also the social context surrounding their development and use in ancient and modern times.

Article

Asset Based Approaches for Community Engagement  

Katrina Wyatt, Robin Durie, and Felicity Thomas

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Environmental Science. Please check back later for the full article. The burden of ill health has shifted, globally, from communicable to non-communicable disease, with poor health clustering in areas of economic deprivation. However, for the most part, public health programs remain focused on changing behaviors associated with poor health (such as smoking or physical inactivity) rather than the contexts that give rise to, and influence, the wide range of behaviors associated with poor health. This way of understanding and responding to population ill health views poor health behavior as a defining “problem” exhibited by a particular group of individuals or a community, which needs to be solved by the intervention of expert practitioners. This sort of approach determines individuals and their communities in terms of deficits, and works on the basis of perceived needs within such communities when seeking to address public health issues. Growing recognition that many of the fundamental determinants of health cannot be attributed solely to individuals, but result instead from the complex interplay between individuals and their social, economic, and cultural environments, has led to calls for new ways of delivering policies and programs aimed at improving health and reducing health inequalities. Such approaches include the incorporation of subjective perspectives and priorities to inform the creation of “health promoting societal contexts.” Alongside this, asset-based approaches to health creation place great emphasis on valuing the skills, knowledge, connections, and potential within a community and seek to identify the protective factors within a neighborhood or organization that support health and wellbeing. Connecting Communities (C2) is a unique asset-based program aimed at creating the conditions for health and wellness within very low-income communities. At the heart of the program is the belief that health emerges from the patterns of relations within neighborhoods, rather than being a static attribute of individuals. C2 seeks to change the nature of the relations both within communities and with service providers (such as the police, housing, education, and health professionals) to co-create responses to issues that are identified by community members themselves. While many of the issues identified concern local environmental conditions, such as vandalism or safe out-door spaces, many are also contributory determinants of ill health. Listening to people, understanding the social, cultural, and environmental context within which they are located, and supporting new partnerships based on reciprocity and mutual benefit ensures that solutions are grounded in the local context and not externally determined, in turn resulting in sustainable health creating communities.

Article

Environmental Economic Instruments in Mexico  

Marisol Rivera-Planter, Carlos Muñoz-Piña, and Mariza Montes de Oca

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Environmental Science. Please check back later for the full article. While most attention on the use of economic instruments for environmental protection has centered on their applications in industrialized countries, middle-income countries have made important inroads as well. Among them, Mexico stands out for its application to the agenda of a wide array of green and brown issues. Starting in 2001, with the introduction of fees to access natural protected areas, followed in 2003, with the establishment of the Payment for Ecosystems Services program for forests, and then in 2014, the introduction of the environmental tax on pesticides, the use of complementary price signals through the fiscal system has sought to influence, in a decentralized manner, the decisions of both consumers and resource owners towards protecting key elements of Mexico’s natural capital. As the central promise from economic instruments is to reduce compliance costs of reaching a certain goal by providing flexibility on how to meet individual obligations, the use of market-based mechanisms in regulations has also been explored with some success in Mexico. Partial incorporation of such a mechanism was applied to the design of its national Federal Fuel Efficiency standards for automobiles, by redefining compliance as meeting a corporate average standard starting from 2006 onwards. More recently, full use of market mechanisms was introduced, in 2016, into the strategy to reach Mexico’s Clean Energy requirement goals. The demonstration by utilities of compliance with the milestone of the national 2024 goal of 35% share of clean energy in power generation can be done either by holding or purchasing Clean Energy Certificates in their secondary market. This allows utilities to separate the decision to purchase energy at the lowest cost, and to meet environmental requirements, also at their lowest cost. Both tax and market mechanisms are converging with Mexico’s Climate Change policy. The Fiscal Reform of 2014 introduced Mexico’s first explicit carbon tax in the form of an excise tax applied to fossil fuels, just as its G20 commitments to phase-out negative carbon pricing (i.e., fossil fuel subsidies) were being fulfilled. With price signals pushing towards more energy efficiency and a lower carbon footprint for the economy, Mexico is on the right track for carbon pricing and is showing leadership at a global scale. It will be interesting to observe how this will mix with a proposed cap-and-trade carbon mechanism, obviously touted as a complementary instrument. The establishment of such a mechanism to meet the emission reduction goals of Mexico’s Climate Change legislation and international commitments is the subject of intense debate and analysis. It represents an interesting decision point for a middle-income country such as Mexico, where all costs are local in nature, the emissions per capita are at the world’s average, and indirect benefits of the energy transition are only partial. In the political economy debate, the linkage to international markets, such as California and Quebec, is not only an option but a central motivation to launch the market, as gains from trade are the driving force.

Article

Oats and Other Forage Crops  

Daren Redfearn

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Environmental Science. Please check back later for the full article. Oats and the other small grains have been “rediscovered” with the drive towards intensifying agricultural production, integrating crops and livestock into diversified systems, and increasing environmental stewardship. Globally, oats and other winter annual small grains such as wheat, cereal rye, triticale, and barley, have been used primarily for grain production. The secondary market following grain production has been restricted to straw, used mainly as livestock bedding. In regions where livestock are economically important, oats and the other annual small grain crops can be used as a grazed forage or fodder crop, hay, or silage. There are several characteristics that make oats and other small grains suitable for multiple agricultural uses. All the small grains are fairly easy to establish, have rapid growth, can be productive, and have a high nutritional value for livestock. Recent improvements in cultivar development have allowed oats and wheat to be grown across a broader range of stressful environmental conditions. Similarly, cultivar development in oats and wheat has improved grazing tolerance, which is important in dual-purpose systems that emphasize both grazing and grain production. On a worldwide scale, oats and other annual small grains are economically and environmentally important forage crops, especially when used as focused components within intensified agricultural systems. Challenges include development of improved cultivars of oats and other small grains for use in intensified agricultural systems, including both grazing and no grazing, that serve as short rotation crops, dual-purpose crops, or are designed to mitigate a specific environmental issue.

Article

Pollution in Terrestrial and Aquatic Sediment  

Rodney Stevens

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Environmental Science. Please check back later for the full article. Pollution problems in aquatic sediments and on land can be quite varied—from the widespread contamination of a coastal bay receiving untreated urban or industrial discharge to the local leakage from underground petroleum tanks or pipelines. Such problems are related to the range of sediment and soil in which they occur. Sediments and soil particles can be carriers, receptors, and sources for contaminants. The effectiveness of these roles is largely related to their adsorptive capacity and is governed mainly by particle size, mineralogy, and organic matter as well as site-specific geochemical conditions. Sustainable use of land and marine areas requires a source-to-sink system perspective in order to prescribe remedial actions. Measures can focus on preventing release from the source, spreading along selective pathways, stabilization, and isolation to protect the receptor. Therefore, many traditional scientific goals, such as provenance (sediment source) identification, the interpretation of sediment transport modes and directions, and post-depositional (diagenetic) changes, are applicable and complementary tools to increase predictability between sampled sites. The carrier function of aquatic sediments is emphasized when contaminates are transported to the site of accumulation. Ground pollution in terrestrial settings, on the other hand, is often due to more local sources. Nevertheless, retention and ecological exposure is dependent on the particle-solute interactions. The stratigraphic architecture of ground environments can also decisively influence the spread of contaminants, contrasting with the largely two-dimensional redistribution of eroded aquatic sediments. Diffuse pollution sources, including agriculture, urban, transportation, and industrial sources, contribute significantly to overall environmental stress. Quantitative modeling of contaminant fluxes is increasingly possible with database availability, but relative risk ranking is still a necessary simplification in many decision-support evaluations due to the complexity of sediment and ground environments.

Article

Quaternary Science  

Kenneth Addison

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Environmental Science. Please check back later for the full article. The Quaternary period of Earth history, which commenced ca. 2.6 Ma ago, is noted for a series of dramatic shifts in global climate between long, cool (“icehouse”) and short, temperate (“greenhouse”) stages. This also coincides with the extinction of later Australopithecine hominins and evolution of modern Homo sapiens. Wide recognition of a fourth, Quaternary, order of geologic time emerged in Europe between ca. 1760–1830 and became closely identified with the concept of an ice age. This most recent episode in Earth history is also the best preserved in stratigraphic and landscape records. Indeed, much of its character and processes continue in present time, which prompted early geologists’ recognition of the concept of uniformitarianism—the present is the key to the past. Quaternary time was quickly divided into a dominant Pleistocene (“most recent”) epoch, characterized by cyclical growth and decay of major continental ice sheets and peripheral permafrost. Disappearance of most of these ice sheets, except in Antarctica and Greenland today, ushered in the Holocene (“wholly modern”) epoch, once thought to terminate the Ice Age but now seen as the current interglacial or temperate stage, commencing ca. 11.7 ka ago. Covering 30–50% of Earth’s land surface at their maxima, ice sheets and permafrost squeezed remaining biomes into a narrower circum-equatorial zone, where research indicated the former occurrence of pluvial and desiccation events. Early efforts to correlate them with mid-high latitude glacials and interglacials revealed the complex and often asynchronous Pleistocene record. Nineteenth-century recognition of just four glaciations reflected a reliance on geomorphology and short terrestrial stratigraphic records, concentrated in northern hemisphere mid- and high-latitudes, until the 1970s. Correlation of δ16-18 O isotope signals from seafloor sediments (from ocean drilling programs after the 1960s) with polar ice core signals from the 1980s onward has revolutionized our understanding of the Quaternary, facilitating a sophisticated, time-constrained record of events and environmental reconstructions from regional to global scales. Records from oceans and ice sheets, some spanning 105–106 years, are augmented by similar long records from loess, lake sediments, and speleothems (cave sediments). Their collective value is enhanced by innovative analytical and dating tools. Over 100 Marine Isotope Stages (MIS) are now recognized in the Quaternary, with dramatic climate shifts at decadal and centennial timescales—with the magnitude of 22 MIS in the past 900,000 years considered to reflect significant ice sheet accumulation and decay. Each cycle between temperate and cool conditions (odd- and even-numbered MIS respectively) is time-asymmetric, with progressive cooling over 80,000 to 100,000 years, followed by an abrupt termination then rapid return to temperate conditions for a few thousand years. The search for causes of Quaternary climate and environmental change embraces all strands of Earth System Science. Strong correlation between orbital forcing and major climate changes (summarized as the Milankovitch mechanism) is displacing earlier emphasis on radiative (direct solar) forcing, but uncertainty remains over how the orbital signal is amplified or modulated. Tectonic forcing (ocean-continent distributions, tectonic uplift, and volcanic outgassing), atmosphere-biogeochemical and greenhouse gas exchange, ocean-land surface albedo and deep- and surface-ocean circulation are all contenders and important agents in their own right. Modern understanding of Quaternary environments and processes feeds an exponential growth of multidisciplinary research, numerical modeling, and applications. Climate modeling exploits mutual benefits to science and society of “hindcasting,” using paleoclimate data to aid understanding of the past and increasing confidence in modeling forecasts. Pursuit of more detailed and sophisticated understanding of ocean-atmosphere-cryosphere-biosphere interaction proceeds apace. The Quaternary is also the stage on which human evolution plays. And the essential distinction between natural climate variability and human forcing is now recognized as designating, in present time, a potential new Anthropocene epoch. Quaternary past and present are major keys to its future.