A vigorous effort to identify and study sentinel species of marine ecosystem in the world’s oceans has developed over the past 50 years. The One Health concept recognizes that the health of humans is connected to the health of animals and the environment. Species ranging from invertebrate to large marine vertebrates have acted as “sentinels” of the exposure to environmental stressors and health impacts on the environment that may also affect human health. Sentinel species can signal warnings, at different levels, about the potential impacts on a specific ecosystem. These warnings can help manage the abiotic and anthropogenic stressors (e.g., climate change, chemical and microbial pollutants, marine litter) affecting ecosystems, biota, and human health.
The effects of exposure to multiple stressors, including pollutants, in the marine environment may be seen at multiple trophic levels of the ecosystem. Attention has focused on the large marine vertebrates, for several reasons. In the past, the use of large marine vertebrates in monitoring and assessing the marine ecosystem has been criticized. The fact that these species are pelagic and highly mobile has led to the suggestion that they are not useful indicators or sentinel species. In recent years, however, an alternative view has emerged: when we have a sufficient understanding of differences in species distribution and behavior in space and time, these species can be extremely valuable sentinels of environmental quality.
Knowledge of the status of large vertebrate populations is crucial for understanding the health of the ecosystem and instigating mitigation measures for the conservation of large vertebrates. For example, it is well known that the various cetacean species exhibit different home ranges and occupy different habitats. This knowledge can be used in “hot spot” areas, such as the Mediterranean Basin, where different species can serve as sentinels of marine environmental quality. Organisms that have relatively long life spans (such as cetaceans) allow for the study of chronic diseases, including reproductive alterations, abnormalities in growth and development, and cancer. As apex predators, marine mammals feed at or near the top of the food chain. As the result of biomagnification, the levels of anthropogenic contaminants found in the tissues of top predators and long-living species are typically high. Finally, the application of consistent examination procedures and biochemical, immunological, and microbiological techniques, combined with pathological examination and behavioral analysis, has led to the development of health assessment methods at the individual and population levels in wild marine mammals. With these tools in hand, investigators have begun to explore and understand the relationships between exposures to environmental stressors and a range of disease end points in sentinel species (ranging from invertebrates to marine mammals) as an indicator of ecosystem health and a harbinger of human health and well-being.
Article
Sentinel Species of Marine Ecosystems
Maria Cristina Fossi and Cristina Panti
Article
The Emergence of Environment as a Security Imperative
Felix Dodds
The emergence of environment as a security imperative is something that could have been avoided. Early indications showed that if governments did not pay attention to critical environmental issues, these would move up the security agenda. As far back as the Club of Rome 1972 report, Limits to Growth, variables highlighted for policy makers included world population, industrialization, pollution, food production, and resource depletion, all of which impact how we live on this planet.
The term environmental security didn’t come into general use until the 2000s. It had its first substantive framing in 1977, with the Lester Brown Worldwatch Paper 14, “Redefining Security.” Brown argued that the traditional view of national security was based on the “assumption that the principal threat to security comes from other nations.” He went on to argue that future security “may now arise less from the relationship of nation to nation and more from the relationship between man to nature.”
Of the major documents to come out of the Earth Summit in 1992, the Rio Declaration on Environment and Development is probably the first time governments have tried to frame environmental security. Principle 2 says: “States have, in accordance with the Charter of the United Nations and the principles of international law, the sovereign right to exploit their own resources pursuant to their own environmental and developmental policies, and the responsibility to ensure that activities within their jurisdiction or control do not cause damage to the environment of other States or of areas beyond the limits of national.”
In 1994, the UN Development Program defined Human Security into distinct categories, including:
• Economic security (assured and adequate basic incomes).
• Food security (physical and affordable access to food).
• Health security.
• Environmental security (access to safe water, clean air and non-degraded land).
By the time of the World Summit on Sustainable Development, in 2002, water had begun to be identified as a security issue, first at the Rio+5 conference, and as a food security issue at the 1996 FAO Summit. In 2003, UN Secretary General Kofi Annan set up a High-Level Panel on “Threats, Challenges, and Change,” to help the UN prevent and remove threats to peace. It started to lay down new concepts on collective security, identifying six clusters for member states to consider. These included economic and social threats, such as poverty, infectious disease, and environmental degradation.
By 2007, health was being recognized as a part of the environmental security discourse, with World Health Day celebrating “International Health Security (IHS).” In particular, it looked at emerging diseases, economic stability, international crises, humanitarian emergencies, and chemical, radioactive, and biological terror threats. Environmental and climate changes have a growing impact on health. The 2007 Fourth Assessment Report (AR4) of the UN Intergovernmental Panel on Climate Change (IPCC) identified climate security as a key challenge for the 21st century. This was followed up in 2009 by the UCL-Lancet Commission on Managing the Health Effects of Climate Change—linking health and climate change.
In the run-up to Rio+20 and the launch of the Sustainable Development Goals, the issue of the climate-food-water-energy nexus, or rather, inter-linkages, between these issues was highlighted. The dialogue on environmental security has moved from a fringe discussion to being central to our political discourse—this is because of the lack of implementation of previous international agreements.
Article
Ecosystem Services and Human Health
Elisabet Lindgren and Thomas Elmqvist
Ecosystem services refer to benefits for human societies and well-being obtained from ecosystems. Research on health effects of ecosystem services have until recently mostly focused on beneficial effects on physical and mental health from spending time in nature or having access to urban green space. However, nearly all of the different ecosystem services may have impacts on health, either directly or indirectly. Ecosystem services can be divided into provisioning services that provide food and water; regulating services that provide, for example, clean air, moderate extreme events, and regulate the local climate; supporting services that help maintain biodiversity and infectious disease control; and cultural services.
With a rapidly growing global population, the demand for food and water will increase. Knowledge about ecosystems will provide opportunities for sustainable agriculture production in both terrestrial and marine environments. Diarrheal diseases and associated childhood deaths are strongly linked to poor water quality, sanitation, and hygiene. Even though improvements are being made, nearly 750 million people still lack access to reliable water sources. Ecosystems such as forests, wetlands, and lakes capture, filter, and store water used for drinking, irrigation, and other human purposes. Wetlands also store and treat solid waste and wastewater, and such ecosystem services could become of increasing use for sustainable development.
Ecosystems contribute to local climate regulation and are of importance for climate change mitigation and adaptation. Coastal ecosystems, such as mangrove and coral reefs, act as natural barriers against storm surges and flooding. Flooding is associated with increased risk of deaths, epidemic outbreaks, and negative health impacts from destroyed infrastructure. Vegetation reduces the risk of flooding, also in cities, by increasing permeability and reducing surface runoff following precipitation events.
The urban heat island effect will increase city-center temperatures during heatwaves. The elderly, people with chronic cardiovascular and respiratory diseases, and outdoor workers in cities where temperatures soar during heatwaves are in particular vulnerable to heat. Vegetation and especially trees help in different ways to reduce temperatures by shading and evapotranspiration. Air pollution increases the mortality and morbidity risks during heatwaves. Vegetation has been shown also to contribute to improved air quality by, depending on plant species, filtering out gases and airborne particulates. Greenery also has a noise-reducing effect, thereby decreasing noise-related illnesses and annoyances. Biological control uses the knowledge of ecosystems and biodiversity to help control human and animal diseases.
Natural surroundings and urban parks and gardens have direct beneficial effects on people’s physical and mental health and well-being. Increased physical activities have well-known health benefits. Spending time in natural environments has also been linked to aesthetic benefits, life enrichments, social cohesion, and spiritual experience. Even living close to or with a view of nature has been shown to reduce stress and increase a sense of well-being.