1-10 of 64 Results  for:

  • Environmental Issues and Problems x
Clear all

Article

Water Governance in the Netherlands  

M.L. (Marie Louise) Blankesteijn and W.D. (Wieke) Pot

Dutch water governance is world famous. It to a large extent determines the global public image of the Netherlands, with its windmills, polders, dikes and dams, and the eternal fight against the water, symbolized by the engineering marvel of the Delta Works. Dutch water governance has a history that dates back to the 11th century. Since the last 200 years, water governance has, however, undergone significant changes. Important historical events setting in motion longer-term developments for Dutch water governance were the Napoleonic rule, land reclamation projects, the Big Flood of 1953, the Afsluitdijk, the impoldering of the former Southern Sea, the ecological turn in water management, and the more integrated approach of “living with water.” In the current anthropocentric age, climate change presents a key challenge for Dutch water governance, as a country that for a large part is situated below sea level and is prone to flooding. The existing Dutch water governance system is multilevel, publicly financed, and, compared to many other countries, still relatively decentralized. The responsibilities for water management are shared among the national government and Directorate-General for Public Works and Water Management, provinces, regional water authorities, and municipalities. Besides these governmental layers, the Delta Commissioner is specifically designed to stimulate a forward-looking view when it comes to water management and climate change. With the Delta Commissioner and Delta Program, the Netherlands aims to become a climate-resilient and water-robust country in 2050. Robustness, adaptation, coordination, integration, and democratization are key ingredients of a future-proof water governance arrangement that can support a climate-resilient Dutch delta. In recent years, the Netherlands already has been confronted with many climate extremes and will need to transform its water management system to better cope with floods but even more so to deal with droughts and sea-levels rising. The latest reports of the Intergovernmental Panel for Climate Change show that more adaptive measures are needed. Such measures also require a stronger coordination between governmental levels, sectors, policies, and infrastructure investments. Furthermore, preparing for the future also requires engagement and integration with other challenges, such as the energy transition, nature conservation, and circular economy. To contribute to sustainability goals related to the energy transition and circular economy, barriers for technical innovation and changes to institutionalized responsibilities will need to be further analyzed and lifted. To govern for the longer term, current democratic institutions may not always be up to the task. Experiments with deliberative forms of democracy and novel ideas to safeguard the interests of future generations are to be further tested and researched to discover their potential for securing a more long-term oriented and integrated approach in water governance.

Article

Policy Analysis and Investment Appraisal in the Water Sector  

Edoardo Borgomeo

Since the earliest forms of human settlement, water resources have shaped societies and have been integral to their proper functioning. In developing—and maintaining—their relationship with water, societies have relied on myriad approaches to appraise options to manage water, that is, identifying expectations and objectives related to water and choosing the course of action to achieve them. This article describes some methodological issues of conventional approaches for policy analysis and investment appraisal in the water sector and then charts a way forward to further strengthen them to achieve water security in the Anthropocene. Despite their clear benefits to society, demonstrated by extensive application to address water-related challenges around the world, conventional approaches to appraising policy options and investments suffer from some limitations. First, appraisal typically focuses on inputs and outputs, not paying enough attention to the outcomes and services that societies expect to obtain from water-related development. Second, appraisal methods still largely consider water as a plentiful resource, paying little attention to its opportunity cost and its multiple values to different users, including ecosystems. Third, most appraisals still ignore behavioural responses and societal dynamics arising from water-related policies and investments. A fourth limitation relates to the deterministic nature of appraisal that fails to properly account for uncertainties and interdependencies. Finally, appraisal still largely focuses on individual projects rather than portfolios of options, largely privileging technological fixes to respond to narrowly defined water-related challenges. Methodological advances in the appraisal of policy options and investments provide a significant opportunity to overcome these limitations and build a more robust and inclusive platform to plan for water security. While further refinements are required, particularly to achieve deeper and more formal integration across disciplines, attention needs to focus on application and uptake of these methodological advances to address urgent water security challenges.

Article

Water and Spatial Planning in the Netherlands: The Latent Potential of Spatial Planning for Flood Resilience  

Nikki Brand and Wil Zonneveld

In February 1953, an extremely powerful northwest storm surge combined with spring tide led to serious floods in a number of countries around the North Sea. No country was hit as badly as the Netherlands. In the southwest of the country, dozens of dikes were breached, leading to over 1,800 casualties. At the time of the 1953 disaster, a government-appointed committee was working on an advisory report about the desired future spatial development of the most urbanized western part of the country, a region largely below sea level. Responding to the 1953 disaster, the committee discussed whether urban development in deep polders should be avoided. The conclusion was that what is best in terms of the desired urban morphology should prevail. This is indeed what happened when the government had to make a choice about where to develop new towns (1960s–1980s) and, in the next stage, where to locate new housing estates in and around cities (1990s–2000s). Near floods along the main rivers of the country in 1992 and 1995 opened a window of opportunity for a series of major changes in flood risk management and in spatial planning and design, respectively. A massive program called Room for the River was carried out, which included more than 30 projects designed by multidisciplinary teams of civil engineers, planners, and spatial designers. Parallel and follow-up programs were carried out in which spatial design again played a role. The concept of risk was redefined in law, leading to more stringent protection norms for densely populated areas—again, a spatial turn in flood risk management. When flood risk management started to take a decisive spatial turn in the 1990s, spatial planning began to change as well, becoming more sensitive to issues related to water management and flood risks. One of these changes involved the mandatory use of a water test in (local) plan making. The continuation of the trend to give greater weight to flood risks became interrupted as the multilevel arrangement of planning in the Netherlands started to change from 2010 onward. This was largely the result of the neoliberal ambition to decentralize and deregulate planning. One main effect was that the government no longer took a leading role in locational choices regarding where to build new housing estates outside cities and towns. By the end of 2021, the government-appointed Delta commissioner issued a stark warning that over 80% of the houses that will be built by 2030 are situated in less desirable locations. This and other effects of the downscaling of planning competencies made the government decide to start a trajectory to partly recentralize planning. There are two contradictory objectives, however, claimed by different government departments: the production of new homes as quickly as possible and the ambition to make water and soil leading in future choices. Bringing flood risk management and spatial planning together means that locational choices and the spatial design of localities have to move in tandem.

Article

The Allocation of Groundwater: From Superstition to Science  

Burke W. Griggs

Groundwater is a critical natural resource, but the law has always struggled with it. During the 19th and early 20th centuries, the common law developed several doctrines to allocate groundwater among competing users. The groundwater revolution of the mid-20th century produced an explosive growth in pumping worldwide—and quickly exposed the flaws of these doctrines. Legal rules predicated on land and on surface waters could not meet the challenges posed by the common-pool groundwater resource: those of understanding groundwater dynamics, quantifying the impacts of pumping on other water rights, and devising satisfactory remedies. Unfettered by received property restraints, pumping on an industrial, aquifer-wide scale depleted and contaminated aquifers, regardless of doctrine. The groundwater revolution motivated significant legal developments. Starting in the 1970s, the Supreme Court of the United States adapted its methods for resolving interstate water disputes to include the effects of groundwater pumping. This jurisprudence has fundamentally influenced international groundwater law, including the negotiation of trans-boundary aquifer agreements. Advances in hydrogeology and computer groundwater modeling have enabled states and parties to evaluate the effects of basin-wide pumping. Nonetheless, difficult legal and governance problems remain. Which level of government—local, state, or national—should exercise jurisdiction over groundwater? What level of pumping qualifies as “safe yield,” especially when the aquifer is overdrawn? How do the demands of modern environmental law and the public trust doctrine affect groundwater rights? How can governments satisfy long-neglected claims to water justice made by Indigenous and minority communities? Innovations in groundwater management provide promising answers. The conjunctive management of surface and groundwater can stabilize water supplies, improve water quality, and protect ecosystems. Integrated water resources management seeks to holistically manage groundwater to achieve social and economic equity. Water markets can reward water conservation, attract new market participants, and encourage the migration of groundwater allocations to more valuable uses, including environmental uses. The modern law of groundwater allocation combines older property doctrines with 21st-century regulatory ideals, but the mixture can be unstable. In nations with long-established water codes such as the United States, common-law Anglophone nations, and various European nations, groundwater law has evolved, if haltingly, to incorporate permitting systems, environmental regulation, and water markets. Elsewhere, the challenges are extreme. Long-standing calls for groundwater reform in India remain unheeded as tens of millions of unregulated tube wells pump away. In China, chronic groundwater mismanagement and aquifer contamination belie the roseate claims of national water law. Sub-Saharan nations have enacted progressive groundwater laws, but poverty, racism, and corruption have maintained grim groundwater realities. Across the field, experts have long identified the central problems and reached a rough consensus about the most effective solutions; there is also a common commitment to secure environmental justice and protect groundwater-dependent ecosystems. The most pressing legal work thus requires building practical pathways to reach these solutions and, most importantly, to connect the public with the groundwater on which it increasingly depends.

Article

Ecosystem Benefits of Large Dead Wood in Freshwater Environments  

Ellen Wohl

Large wood in freshwater environments is downed, dead wood pieces in river channels, floodplains, wetlands, and lakes. Large wood was historically much more abundant in freshwaters, but decades to centuries of deforestation and direct wood removal have decreased wood loads—volumes of large wood per unit area—in freshwaters around the world. The widespread public perception that large wood is undesirable in freshwater environments contrasts with scientific understanding of the beneficial effects of large wood. Large wood tends to increase the spatial heterogeneity of hydraulics, substrate, channel planform, and the floodplain and hyporheic zone in rivers. This equates to greater habitat diversity and refugia for organisms, as well as energy dissipation and storage of materials during floods, which can increase the resilience of the river to disturbances such as wildfire, drought, and flooding. Similarly, wood in lakes increases lakeshore and lakebed heterogeneity of hydraulics, substrate, habitat, nutrient uptake, and storage of particulate organic matter and sediment. Large wood in rivers and lakes provides an array of vital ecosystem functions, and both individual species and biotic communities are adversely affected by a lack of wood in rivers and lakes that have been managed in a way that reduces wood loads. River and lake management are now more likely to include protection of existing large wood and active reintroduction of large wood, but numerous questions remain regarding appropriate targets for wood loads in different environmental settings, including potential threshold wood loads necessary to create desired effects. Large wood can also directly and indirectly enhance carbon storage in freshwater environments, but this storage remains poorly quantified.

Article

Water Risks and Rural Development in Coastal Bangladesh  

Sonia Hoque and Mohammad Shamsudduha

Rural populations in river deltas experience multiple water risks, emerging from intersecting anthropogenic and hydroclimatic drivers of change. For more than 20 million inhabitants of coastal Bangladesh—living on the lower reaches of the Ganges–Brahmaputra–Meghna mega-delta—these water risks relate to access to safe drinking water, management of water resources for farm-based livelihoods, and protection from water-related hazards. To address these risks, water policies in the 20th century emphasized infrastructure development, ranging from embankments for flood protection to handpumps for rural water supply. However, interventions designed to promote aggregate economic growth often resulted in sociospatial inequalities in risk distribution, particularly when policy-makers and practitioners failed to recognize the complex dynamics of human–environment interactions in the world’s most hydromorphologically active delta. In Bangladesh’s southwestern region, construction of the polder system (embanked islands interlaced with tidal rivers) since the late 1960s has augmented agricultural production by protecting low-lying land from diurnal tidal action and frequent storm surges. However, anthropogenic modification of the natural hydrology, emulating the Dutch dyke system, has altered the sedimentation patterns and resulted in severe waterlogging since the 1980s. Contrary to their intended purpose of keeping saline water out, the polders also facilitated growth of export-oriented brackish water shrimp aquaculture, resulting in widespread environmental degradation and social inequalities from shifting power dynamics between large and small landholding farmers. Throughout the 1990s, there were several incidences of violent conflicts between the local communities and government authorities, as well as between different farmer groups. Waterlogged communities demanded to revert to indigenous practices of controlled flooding. Despite being formally adopted as a policy response, the implementation of tidal river management by the government has only been partially successful owing to bureaucratic delays, unfair compensation, and design flaws. Similarly, antishrimp movements gained momentum in several polders to ban the deliberate flooding of cropland with saline water. These narratives of conflict and cooperation demonstrate the complexities of policy outcomes, the unequal distribution of water risks, and the need to integrate local knowledge in decision-making. Social and spatial inequalities are also prevalent in access to safe drinking water owing to heterogeneity in groundwater salinity and infrastructure investments. Public investments are skewed toward low-salinity areas where tubewells are feasible, while high-salinity areas are often served by uncoordinated donor investments in alternative technologies, such as small piped schemes, reverse osmosis plants, and pond sand filters, and household self-supply through shallow tubewells and rainwater harvesting. These struggles to meet daily water needs from multiple sources pose uncertain and unequal water quality and affordability risks to coastal populations. The path-dependent sequences of infrastructure and institutional interventions that shaped the development trajectory of coastal Bangladesh exemplify the complexities of managing water risks and varied responses by public and private actors. While structural solutions still dominate the global water policy discourse, there is increased recognition of the nonlinearity of risks and responses, as well as the need to incorporate adaptive decision-making processes with room for social learning and uncertainties.

Article

The Environmental History of the Antarctic  

Sebastian Grevsmühl

The environmental history of the polar regions, and in particular of Antarctica, is a rather recent area of inquiry that is in many ways still in its infancy. As a truly multidisciplinary research field, environmental history draws much inspiration from a large diversity of fields of historical and social research, including economic history, diplomatic history, cultural history, the history of explorations, and science and technology studies. Although overarching book-length studies on the environmental history of Antarctica are still rare, historical scholars have already conducted many in-depth case studies related mostly to three major interrelated research topics: Antarctic governance, natural resource exploitation, and tourism. These recent historical efforts, carried out mostly by a new generation of historians, have thus far allowed the proposal of several powerful counternarratives, challenging the frequent yet erroneous assertion that environmental protection and conservation were completely absent from Antarctic affairs before the 1970s. In so doing, environmental historians started offering a much more complex and nuanced account of what is frequently referred to as the “greening” of Antarctica, going well beyond “declensionist” narratives and conservation success stories that commonly pervade not only environmental histories but also public discourse. Indeed, all recent historical studies agree that there is nothing inevitable about the “greening” of Antarctica, nor are conservation and environmental protection its natural destiny. Science, politics, imperialism, capitalism, and imaginaries all have played their part in this important history, a history that remains still largely to be written.

Article

Infiltration of Water Into Soil  

John Nimmo and Rose Shillito

The infiltration of water into soil has profound importance as a central component of the hydrologic cycle and as the means of replenishing soil water that sustains terrestrial life. Systematic quantitative study of infiltration began in the 19th century and has continued through to the present as a central topic of soils, soil physics, and hydrology. Two forces drive infiltration: gravity, and capillarity, which results from the interaction of air-water surface tension with the solid components of soil. There are also two primary ways water moves into and within the soil. One is diffuse flow, through the pores between individual soil grains, moving from one to the next and so on. The other is preferential flow, through elongated channels such as those left by worms and roots. Diffuse flow is slow and continues as long as there is a net driving force. Preferential flow is fast and occurs only when water is supplied at high intensity, as during irrigation, major rainstorms, or floods. Both types are important in infiltration. Especially considering that preferential flow does not yet have a fully accepted theory, this means that infiltration entails multiple processes, some of them poorly understood. The soil at a given location has a limit to how much water it can absorb—the infiltration capacity. The interplay between the mode and rate of water supply, infiltration capacity, and characteristics of the soil and surrounding terrain determines infiltration into the soil. Much effort has gone into developing means of measuring and predicting both infiltration capacity and the actual infiltration rate. Various methods are available, and research is needed to improve their accuracy and ease of use.

Article

Business Models for Sustainability  

Nancy Bocken

Human activity is increasingly impacting the environment negatively on all scales. There is an urgent need to transform human activity toward sustainable development. Business has a key role to play in this sustainability transition through technological, product and service, and process innovations, as well as innovative business models. Business models can enable new technologies, and vice versa. These models are therefore important in the transition to sustainability. Business models for sustainability, or synonymously, sustainable business models, take holistic views on how business is operated in relation to its stakeholders, including the society and the natural environment. They incorporate economic, environmental, and social aspects in an organization’s purpose and performance measures; consider the needs of all stakeholders rather than giving priority to owner and shareholder expectations; treat “nature” as a stakeholder; and take a system as well as a firm-level perspective on the way business is conducted. The research field of sustainable business models emerged from fields such as service business models, green and social business models, and concepts such as sharing and circular economy. Academics have argued that the most service-oriented business models can achieve a “factor 10” environmental impact improvement if designed the right way. Researchers have developed various conceptualizations, typologies, tools, and methods and reviews on sustainable business models. However, sustainable business models are not yet mainstream. Important research areas include the following: (a) tools, methods, and experimentation; (b) the assessment of sustainability impact and rebounds for different stakeholders; (c) sufficiency and degrowth; and (d) the twin revolution of sustainability and digital transition. First, a plethora of tools and approaches are available for inspiration and for creation of sustainable business model designs. Second, in the field of assessment, methods have been based on life cycle thinking considering the supply chain and how a product is (re)used and eventually disposed of. In the field of sufficiency, authors have recognized the importance of moderating consumption through innovative business models to reduce the total need for products, reducing the impact on the environment. Finally, researchers have started to investigate the important interplay between sustainability and digitalization. Because of the potential to achieve a factor 10 environmental impact improvement, sustainable business models are an important source of inspiration for further work, including the upscaling of sustainable business models in established businesses and in new ventures. Understanding how to design better business models and preempting their usage in practice are essential to achieve a desired positive impact. In the field of sufficiency, the macro-impacts of individual and business behavior would need to be better understood. In the area of digital innovation, environmental, societal, and economic values need scrutinization. Researchers and practitioners can leverage the popularity of this field by addressing these important areas to support the development and roll-out of sustainable business models with significantly improved economic, environmental, and societal impact.

Article

Politics of Local Community Engagement in Transboundary Water Negotiations  

Isabela Espindola and Pilar Villar

The sharing of transboundary water resources, whether surface or groundwater, is a significant challenge, both in theory and practice. Countries in situations of sharing these natural resources are predisposed to interact with each other. These interactions, here called transboundary water interactions, are characterized by the coexistence of cooperation and conflict, which can arise at different governance levels. However, negotiations around transboundary water resources primarily occur between diplomats and high government members from riparian countries and river basin organization (RBO) managers. Transboundary water negotiations are usually considered high-level political discussions, given the complexity and scale of the water challenges. Consequently, decision-making processes incorporate only a limited number of participants, who make decisions capable of impacting the entire population that depend on the shared waters. Over the last 20 years, there has been a need for greater transparency and a participatory process in transboundary water negotiations, especially for local community engagement and collaboration in these processes. Many of the negotiation processes around transboundary water resources need the participation of municipalities and local populations, concomitant with the involvement of RBOs, to carry out decisions to manage transboundary waters in an integrated manner. There are several reasons for this demand, including negotiation effectiveness, contestation prevention, data sharing, ensuring continuing participation and collaboration, and promoting public awareness related to water resources. Discussing social participation, particularly in the management of transboundary water resources, requires attention to the historical context and its constraints. Considering the enormous challenge, the experiences of local community engagement in transboundary water negotiations in South America, especially from the Guarani Aquifer and the La Plata Basin, are good examples for improving this discussion around transboundary water interactions and local community engagement. The La Plata Basin is the second-largest transboundary basin in the continent, shared by Argentina, Bolivia, Brazil, Uruguay, and Paraguay, while the Guarani Aquifer is one of the largest reservoirs of freshwater worldwide, shared by Argentina, Brazil, Paraguay, and Uruguay. Even with both having cooperation agreements in place between the riparian states, there are still great difficulties with regard to the participation of local communities in transboundary water negotiations.