Dutch water governance is world famous. It to a large extent determines the global public image of the Netherlands, with its windmills, polders, dikes and dams, and the eternal fight against the water, symbolized by the engineering marvel of the Delta Works. Dutch water governance has a history that dates back to the 11th century. Since the last 200 years, water governance has, however, undergone significant changes. Important historical events setting in motion longer-term developments for Dutch water governance were the Napoleonic rule, land reclamation projects, the Big Flood of 1953, the Afsluitdijk, the impoldering of the former Southern Sea, the ecological turn in water management, and the more integrated approach of “living with water.” In the current anthropocentric age, climate change presents a key challenge for Dutch water governance, as a country that for a large part is situated below sea level and is prone to flooding.
The existing Dutch water governance system is multilevel, publicly financed, and, compared to many other countries, still relatively decentralized. The responsibilities for water management are shared among the national government and Directorate-General for Public Works and Water Management, provinces, regional water authorities, and municipalities. Besides these governmental layers, the Delta Commissioner is specifically designed to stimulate a forward-looking view when it comes to water management and climate change. With the Delta Commissioner and Delta Program, the Netherlands aims to become a climate-resilient and water-robust country in 2050.
Robustness, adaptation, coordination, integration, and democratization are key ingredients of a future-proof water governance arrangement that can support a climate-resilient Dutch delta. In recent years, the Netherlands already has been confronted with many climate extremes and will need to transform its water management system to better cope with floods but even more so to deal with droughts and sea-levels rising. The latest reports of the Intergovernmental Panel for Climate Change show that more adaptive measures are needed. Such measures also require a stronger coordination between governmental levels, sectors, policies, and infrastructure investments. Furthermore, preparing for the future also requires engagement and integration with other challenges, such as the energy transition, nature conservation, and circular economy. To contribute to sustainability goals related to the energy transition and circular economy, barriers for technical innovation and changes to institutionalized responsibilities will need to be further analyzed and lifted.
To govern for the longer term, current democratic institutions may not always be up to the task. Experiments with deliberative forms of democracy and novel ideas to safeguard the interests of future generations are to be further tested and researched to discover their potential for securing a more long-term oriented and integrated approach in water governance.
Article
Water Governance in the Netherlands
M.L. (Marie Louise) Blankesteijn and W.D. (Wieke) Pot
Article
The Allocation of Groundwater: From Superstition to Science
Burke W. Griggs
Groundwater is a critical natural resource, but the law has always struggled with it. During the 19th and early 20th centuries, the common law developed several doctrines to allocate groundwater among competing users. The groundwater revolution of the mid-20th century produced an explosive growth in pumping worldwide—and quickly exposed the flaws of these doctrines. Legal rules predicated on land and on surface waters could not meet the challenges posed by the common-pool groundwater resource: those of understanding groundwater dynamics, quantifying the impacts of pumping on other water rights, and devising satisfactory remedies. Unfettered by received property restraints, pumping on an industrial, aquifer-wide scale depleted and contaminated aquifers, regardless of doctrine.
The groundwater revolution motivated significant legal developments. Starting in the 1970s, the Supreme Court of the United States adapted its methods for resolving interstate water disputes to include the effects of groundwater pumping. This jurisprudence has fundamentally influenced international groundwater law, including the negotiation of trans-boundary aquifer agreements. Advances in hydrogeology and computer groundwater modeling have enabled states and parties to evaluate the effects of basin-wide pumping. Nonetheless, difficult legal and governance problems remain. Which level of government—local, state, or national—should exercise jurisdiction over groundwater? What level of pumping qualifies as “safe yield,” especially when the aquifer is overdrawn? How do the demands of modern environmental law and the public trust doctrine affect groundwater rights? How can governments satisfy long-neglected claims to water justice made by Indigenous and minority communities? Innovations in groundwater management provide promising answers. The conjunctive management of surface and groundwater can stabilize water supplies, improve water quality, and protect ecosystems. Integrated water resources management seeks to holistically manage groundwater to achieve social and economic equity. Water markets can reward water conservation, attract new market participants, and encourage the migration of groundwater allocations to more valuable uses, including environmental uses.
The modern law of groundwater allocation combines older property doctrines with 21st-century regulatory ideals, but the mixture can be unstable. In nations with long-established water codes such as the United States, common-law Anglophone nations, and various European nations, groundwater law has evolved, if haltingly, to incorporate permitting systems, environmental regulation, and water markets. Elsewhere, the challenges are extreme. Long-standing calls for groundwater reform in India remain unheeded as tens of millions of unregulated tube wells pump away. In China, chronic groundwater mismanagement and aquifer contamination belie the roseate claims of national water law. Sub-Saharan nations have enacted progressive groundwater laws, but poverty, racism, and corruption have maintained grim groundwater realities. Across the field, experts have long identified the central problems and reached a rough consensus about the most effective solutions; there is also a common commitment to secure environmental justice and protect groundwater-dependent ecosystems. The most pressing legal work thus requires building practical pathways to reach these solutions and, most importantly, to connect the public with the groundwater on which it increasingly depends.
Article
Water User Associations and Collective Action in Irrigation and Drainage
Bryan Bruns
If there is too little or too much water, farmers may be able to work together to control water and grow more food. Even before the rise of cities and states, people living in ancient settlements cooperated to create better growing conditions for useful plants and animals by diverting, retaining, or draining water. Local collective action by farmers continued to play a major role in managing water for agriculture, including in later times and places when rulers sometimes also organized construction of dams, dikes, and canals.
Comparative research on long-lasting irrigation communities and local governance of natural resources has found immense diversity in management rules tailored to the variety of local conditions. Within this diversity, Elinor Ostrom identified shared principles of institutional design: clear social and physical boundaries; fit between rules and local conditions, including proportionality in sharing costs and benefits; user participation in modifying rules; monitoring by users or those accountable to them; graduated sanctions to enforce rules; low-cost conflict resolution; government tolerance or support for self-governance; and nested organizations.
During the 19th and 20th centuries, centralized bureaucracies constructed many large irrigation schemes. Farmers were typically expected to handle local operation and maintenance and comply with centralized management. Postcolonial international development finance for irrigation and drainage systems usually flowed through national bureaucracies, strengthening top-down control of infrastructure and water management.
Pilot projects in the 1970s in the Philippines and Sri Lanka inspired internationally funded efforts to promote participatory irrigation management in many countries. More ambitious reforms for transfer of irrigation management to water user associations (WUAs) drew on examples in Colombia, Mexico, Turkey, and elsewhere. These reforms have shown the feasibility in some cases of changing policies and practices to involve irrigators more closely in decisions about design, construction, and some aspects of operation and maintenance, including cooperation in scheme-level co-management. However, WUAs and associated institutional reforms are clearly not panaceas and have diverse results depending on context and on contingencies of implementation. Areas of mixed or limited impact and for potential improvement include performance in delivering water; maintaining infrastructure; mobilizing local resources; sustaining organizations after project interventions; and enhancing social inclusion and equity in terms of multiple uses of water, gender, age, ethnicity, poverty, land tenure, and other social differences.
Cooperation in managing water for agriculture can contribute to coping with present and future challenges, including growing more food to meet rising demand; competition for water between agriculture, industry, cities, and the environment; increasing drought, flood, and temperatures due to climate change; social and economic shifts in rural areas, including outmigration and diversification of livelihoods; and the pursuit of environmental sustainability.
Article
Water Security
Claudia Sadoff, David Grey, and Edoardo Borgomeo
Water security has emerged in the 21st century as a powerful construct to frame the water objectives and goals of human society and to support and guide local to global water policy and management. Water security can be described as the fundamental societal goal of water policy and management. This article reviews the concept of water security, explaining the differences between water security and other approaches used to conceptualize the water-related challenges facing society and ecosystems and describing some of the actions needed to achieve water security. Achieving water security requires addressing two fundamental challenges at all scales: enhancing water’s productive contributions to human and ecosystems’ well-being, livelihoods and development, and minimizing water’s destructive impacts on societies, economies, and ecosystems resulting, for example, from too much (flood), too little (drought) or poor quality (polluted) water.
Article
Environmental Impacts of Tropical Soybean and Palm Oil Crops
Kimberly M. Carlson and Rachael D. Garrett
Oil crops play a critical role in global food and energy systems. Since these crops have high oil content, they provide cooking oils for human consumption, biofuels for energy, feed for animals, and ingredients in beauty products and industrial processes. In 2014, oil crops occupied about 20% of crop harvested area worldwide. While small-scale oil crop production for subsistence or local consumption continues in certain regions, global demand for these versatile crops has led to substantial expansion of oil crop agriculture destined for export or urban markets. This expansion and subsequent cultivation has diverse effects on the environment, including loss of forests, savannas, and grasslands, greenhouse gas emissions, regional climate change, biodiversity decline, fire, and altered water quality and hydrology. Oil palm in Southeast Asia and soybean in South America have been identified as major proximate causes of tropical deforestation and environmental degradation. Stringent conservation policies and yield increases are thought to be critical to reducing rates of soybean and oil palm expansion into natural ecosystems. However, the higher profits that often accompany greater yields may encourage further expansion, while policies that restrict oil crop expansion in one region may generate secondary “spillover” effects on other crops and regions. Due to these complex feedbacks, ensuring a sustainable supply of oil crop products to meet global demand remains a major challenge for agricultural companies, farmers, governments, and civil society.
Article
Surface Irrigation
Luis S. Pereira and José M. Gonçalves
Surface irrigation is the oldest and most widely used irrigation method, more than 83% of the world’s irrigated area. It comprises traditional systems, developed over millennia, and modern systems with mechanized and often automated water application and adopting precise land-leveling. It adapts well to non-sloping conditions, low to medium soil infiltration characteristics, most crops, and crop mechanization as well as environmental conditions. Modern methods provide for water and energy saving, control of environmental impacts, labor saving, and cropping economic success, thus for competing with pressurized irrigation methods. Surface irrigation refers to a variety of gravity application of the irrigation water, which infiltrates into the soil while flowing over the field surface. The ways and timings of how water flows over the field and infiltrates the soil determine the irrigation phases—advance, maintenance or ponding, depletion, and recession—which vary with the irrigation method, namely paddy basin, leveled basin, border and furrow irrigation, generally used for field crops, and wild flooding and water spreading from contour ditches, used for pasture lands. System performance is commonly assessed using the distribution uniformity indicator, while management performance is assessed with the application efficiency or the beneficial water use fraction. The factors influencing system performance are multiple and interacting—inflow rate, field length and shape, soil hydraulics roughness, field slope, soil infiltration rate, and cutoff time—while management performance, in addition to these factors, depends upon the soil water deficit at time of irrigation, thus on the way farmers are able to manage irrigation. The process of surface irrigation is complex to describe because it combines surface flow with infiltration into the soil profile. Numerous mathematical computer models have therefore been developed for its simulation, aimed at both design adopting a target performance and field evaluation of actual performance. The use of models in design allows taking into consideration the factors referred to before and, when adopting any type of decision support system or multicriteria analysis, also taking into consideration economic and environmental constraints and issues.
There are various aspects favoring and limiting the adoption of surface irrigation. Favorable aspects include the simplicity of its adoption at farm in flat lands with low infiltration rates, namely when water conveyance and distribution are performed with canal and/or low-pressure pipe systems, low capital investment, and low energy consumption. Most significant limitations include high soil infiltration and high variability of infiltration throughout the field, land leveling requirements, need for control of a constant inflow rate, difficulties in matching irrigation time duration with soil water deficit at time of irrigation, and difficult access to equipment for mechanized and automated water application and distribution. The modernization of surface irrigation systems and design models, as well as models and tools usable to support surface irrigation management, have significantly impacted water use and productivity, and thus competitiveness of surface irrigation.
Article
Organic Farming
Theodore J. K. Radovich
Organic farming occupies a unique position among the world’s agricultural systems. While not the only available model for sustainable food production, organic farmers and their supporters have been the most vocal advocates for a fully integrated agriculture that recognizes a link between the health of the land, the food it produces, and those that consume it. Advocacy for the biological basis of agriculture and the deliberate restriction or prohibition of many agricultural inputs arose in response to potential and observed negative environmental impacts of new agricultural technologies introduced in the 20th century. A primary focus of organic farming is to enhance soil ecological function by building soil organic matter that in turn enhances the biota that soil health and the health of the agroecosystem depends on.
The rapid growth in demand for organic products in the late 20th and early 21st centuries is based on consumer perception that organically grown food is better for the environment and human health. Although there have been some documented trends in chemical quality differences between organic and non-organic products, the meaningful impact of the magnitude of these differences is unclear. There is stronger evidence to suggest that organic systems pose less risk to the environment, particularly with regard to water quality; however, as intensity of management in organic farming increases, the potential risk to the environment is expected to also increase. In the early 21st century there has been much discussion centered on the apparent bifurcation of organic farming into two approaches: “input substitution” and “system redesign.” The former approach is a more recent phenomenon associated with pragmatic considerations of scaling up the size of operations and long distance shipping to take advantage of distant markets. Critics argue that this approach represents a “conventionalization” of organic agriculture that will erode potential benefits of organic farming to the environment, human health, and social welfare. A current challenge of organic farming systems is to reconcile the different views among organic producers regarding issues arising from the rapid growth of organic farming.
Article
Economics of Low Carbon Agriculture
Dominic Moran and Jorie Knook
Climate change is already having a significant impact on agriculture through greater weather variability and the increasing frequency of extreme events. International policy is rightly focused on adapting and transforming agricultural and food production systems to reduce vulnerability. But agriculture also has a role in terms of climate change mitigation. The agricultural sector accounts for approximately a third of global anthropogenic greenhouse gas emissions, including related emissions from land-use change and deforestation. Farmers and land managers have a significant role to play because emissions reduction measures can be taken to increase soil carbon sequestration, manage fertilizer application, and improve ruminant nutrition and waste. There is also potential to improve overall productivity in some systems, thereby reducing emissions per unit of product. The global significance of such actions should not be underestimated. Existing research shows that some of these measures are low cost relative to the costs of reducing emissions in other sectors such as energy or heavy industry. Some measures are apparently cost-negative or win–win, in that they have the potential to reduce emissions and save production costs. However, the mitigation potential is also hindered by the biophysical complexity of agricultural systems and institutional and behavioral barriers limiting the adoption of these measures in developed and developing countries. This includes formal agreement on how agricultural mitigation should be treated in national obligations, commitments or targets, and the nature of policy incentives that can be deployed in different farming systems and along food chains beyond the farm gate. These challenges also overlap growing concern about global food security, which highlights additional stressors, including demographic change, natural resource scarcity, and economic convergence in consumption preferences, particularly for livestock products. The focus on reducing emissions through modified food consumption and reduced waste is a recent agenda that is proving more controversial than dealing with emissions related to production.
Article
How Environmental Degradation Impoverishes the Poor
Edward B. Barbier
Globally, around 1.5 billion people in developing countries, or approximately 35% of the rural population, can be found on less-favored agricultural land (LFAL), which is susceptible to low productivity and degradation because the agricultural potential is constrained biophysically by terrain, poor soil quality, or limited rainfall. Around 323 million people in such areas also live in locations that are highly remote, and thus have limited access to infrastructure and markets. The households in such locations often face a vicious cycle of declining livelihoods, increased ecological degradation and loss of resource commons, and declining ecosystem services on which they depend. In short, these poor households are prone to a poverty-environment trap. Policies to eradicate poverty, therefore, need to be targeted to improve the economic livelihood, productivity, and income of the households located on remote LFAL. The specific elements of such a strategy include involving the poor in paying for ecosystem service schemes and other measures that enhance the environments on which the poor depend; targeting investments directly to improving the livelihoods of the rural poor, thus reducing their dependence on exploiting environmental resources; and tackling the lack of access by the rural poor in less-favored areas to well-functioning and affordable markets for credit, insurance, and land, as well as the high transportation and transaction costs that prohibit the poorest households in remote areas to engage in off-farm employment and limit smallholder participation in national and global markets.