1-7 of 7 Results  for:

  • Framing Concepts in Environmental Science x
  • Agriculture and the Environment x
Clear all

Article

Climate Change Impacts on Agriculture across Africa  

Laura Pereira

Confidence in the projected impacts of climate change on agricultural systems has increased substantially since the first Intergovernmental Panel on Climate Change (IPCC) reports. In Africa, much work has gone into downscaling global climate models to understand regional impacts, but there remains a dearth of local level understanding of impacts and communities’ capacity to adapt. It is well understood that Africa is vulnerable to climate change, not only because of its high exposure to climate change, but also because many African communities lack the capacity to respond or adapt to the impacts of climate change. Warming trends have already become evident across the continent, and it is likely that the continent’s 2000 mean annual temperature change will exceed +2°C by 2100. Added to this warming trend, changes in precipitation patterns are also of concern: Even if rainfall remains constant, due to increasing temperatures, existing water stress will be amplified, putting even more pressure on agricultural systems, especially in semiarid areas. In general, high temperatures and changes in rainfall patterns are likely to reduce cereal crop productivity, and new evidence is emerging that high-value perennial crops will also be negatively impacted by rising temperatures. Pressures from pests, weeds, and diseases are also expected to increase, with detrimental effects on crops and livestock. Much of African agriculture’s vulnerability to climate change lies in the fact that its agricultural systems remain largely rain-fed and underdeveloped, as the majority of Africa’s farmers are small-scale farmers with few financial resources, limited access to infrastructure, and disparate access to information. At the same time, as these systems are highly reliant on their environment, and farmers are dependent on farming for their livelihoods, their diversity, context specificity, and the existence of generations of traditional knowledge offer elements of resilience in the face of climate change. Overall, however, the combination of climatic and nonclimatic drivers and stressors will exacerbate the vulnerability of Africa’s agricultural systems to climate change, but the impacts will not be universally felt. Climate change will impact farmers and their agricultural systems in different ways, and adapting to these impacts will need to be context-specific. Current adaptation efforts on the continent are increasing across the continent, but it is expected that in the long term these will be insufficient in enabling communities to cope with the changes due to longer-term climate change. African famers are increasingly adopting a variety of conservation and agroecological practices such as agroforestry, contouring, terracing, mulching, and no-till. These practices have the twin benefits of lowering carbon emissions while adapting to climate change as well as broadening the sources of livelihoods for poor farmers, but there are constraints to their widespread adoption. These challenges vary from insecure land tenure to difficulties with knowledge-sharing. While African agriculture faces exposure to climate change as well as broader socioeconomic and political challenges, many of its diverse agricultural systems remain resilient. As the continent with the highest population growth rate, rapid urbanization trends, and rising GDP in many countries, Africa’s agricultural systems will need to become adaptive to more than just climate change as the uncertainties of the 21st century unfold.

Article

Economics of Climate Change Adaptation  

Babatunde O. Abidoye

To view climate change adaptation from an economic perspective requires a definition of adaptation, an economic framework in which to view adaptation, and a review of the literature on specific adaptations (especially in agriculture). A focus on tools for applying adaptation to developing countries highlights the difference between mitigation and the adaptation decision-making process. Mitigation decisions take a long-term perspective because carbon dioxide lasts for a very long time in the atmosphere. Adaptation decisions typically last the lifespan of the investments, so the time frame depends on the specific adaptation investment, but it is invariably short compared to mitigation choices, which have implications for centuries. The short time frame means that adaptation decisions are not plagued by the same uncertainty that plagues mitigation choices. Finally, most adaptation decisions are local and private, whereas mitigation is a global public decision. Private adaptation will occur even without large government programs. Public adaptations that require government assistance can mainly be made by existing government agencies. Adaptation does not require a global agreement.

Article

Economics of Low Carbon Agriculture  

Dominic Moran and Jorie Knook

Climate change is already having a significant impact on agriculture through greater weather variability and the increasing frequency of extreme events. International policy is rightly focused on adapting and transforming agricultural and food production systems to reduce vulnerability. But agriculture also has a role in terms of climate change mitigation. The agricultural sector accounts for approximately a third of global anthropogenic greenhouse gas emissions, including related emissions from land-use change and deforestation. Farmers and land managers have a significant role to play because emissions reduction measures can be taken to increase soil carbon sequestration, manage fertilizer application, and improve ruminant nutrition and waste. There is also potential to improve overall productivity in some systems, thereby reducing emissions per unit of product. The global significance of such actions should not be underestimated. Existing research shows that some of these measures are low cost relative to the costs of reducing emissions in other sectors such as energy or heavy industry. Some measures are apparently cost-negative or win–win, in that they have the potential to reduce emissions and save production costs. However, the mitigation potential is also hindered by the biophysical complexity of agricultural systems and institutional and behavioral barriers limiting the adoption of these measures in developed and developing countries. This includes formal agreement on how agricultural mitigation should be treated in national obligations, commitments or targets, and the nature of policy incentives that can be deployed in different farming systems and along food chains beyond the farm gate. These challenges also overlap growing concern about global food security, which highlights additional stressors, including demographic change, natural resource scarcity, and economic convergence in consumption preferences, particularly for livestock products. The focus on reducing emissions through modified food consumption and reduced waste is a recent agenda that is proving more controversial than dealing with emissions related to production.

Article

From Plows, Horses, and Harnesses to Precision Technologies in the North American Great Plains  

David E. Clay, Sharon A. Clay, Thomas DeSutter, and Cheryl Reese

Since the discovery that food security could be improved by pushing seeds into the soil and later harvesting a desirable crop, agriculture and agronomy have gone through cycles of discovery, implementation, and innovation. Discoveries have produced predicted and unpredicted impacts on the production and consumption of locally produced foods. Changes in technology, such as the development of the self-cleaning steel plow in the 18th century, provided a critical tool needed to cultivate and seed annual crops in the Great Plains of North America. However, plowing the Great Plains would not have been possible without the domestication of plants and animals and the discovery of the yoke and harness. Associated with plowing the prairies were extensive soil nutrient mining, a rapid loss of soil carbon, and increased wind and water erosion. More recently, the development of genetically modified organisms (GMOs) and no-tillage planters has contributed to increased adoption of conservation tillage, which is less damaging to the soil. In the future, the ultimate impact of climate change on agronomic practices in the North American Great Plains is unknown. However, projected increasing temperatures and decreased rainfall in the southern Great Plains (SGP) will likely reduce agricultural productivity. Different results are likely in the northern Great Plains (NGP) where higher temperatures can lead to increased agricultural intensification, the conversion of grassland to cropland, increased wildlife fragmentation, and increased soil erosion. Precision farming, conservation, cover crops, and the creation of plants better designed to their local environment can help mitigate these effects. However, changing practices require that farmers and their advisers understand the limitations of the soils, plants, and environment, and their production systems. Failure to implement appropriate management practices can result in a rapid decline in soil productivity, diminished water quality, and reduced wildlife habitat.

Article

Hunter-Gatherer Economies in the Old World and New World  

Christopher Morgan, Shannon Tushingham, Raven Garvey, Loukas Barton, and Robert L. Bettinger

At the global scale, conceptions of hunter-gatherer economies have changed considerably over time and these changes were strongly affected by larger trends in Western history, philosophy, science, and culture. Seen as either “savage” or “noble” at the dawn of the Enlightenment, hunter-gatherers have been regarded as everything from holdovers from a basal level of human development, to affluent, ecologically-informed foragers, and ultimately to this: an extremely diverse economic orientation entailing the fullest scope of human behavioral diversity. The only thing linking studies of hunter-gatherers over time is consequently simply the definition of the term: people whose economic mode of production centers on wild resources. When hunter-gatherers are considered outside the general realm of their shared subsistence economies, it is clear that their behavioral diversity rivals or exceeds that of other economic orientations. Hunter-gatherer behaviors range in a multivariate continuum from: a focus on mainly large fauna to broad, wild plant-based diets similar to those of agriculturalists; from extremely mobile to sedentary; from relying on simple, generalized technologies to very specialized ones; from egalitarian sharing economies to privatized competitive ones; and from nuclear family or band-level to centralized and hierarchical decision-making. It is clear, however, that hunting and gathering modes of production had to have preceded and thus given rise to agricultural ones. What research into the development of human economies shows is that transitions from one type of hunting and gathering to another, or alternatively to agricultural modes of production, can take many different evolutionary pathways. The important thing to recognize is that behaviors which were essential to the development of agriculture—landscape modification, intensive labor practices, the division of labor and the production, storage, and redistribution of surplus—were present in a range of hunter-gatherer societies beginning at least as early as the Late Pleistocene in Africa, Europe, Asia, and the Americas. Whether these behaviors eventually led to the development of agriculture depended in part on the development of a less variable and CO2-rich climatic regime and atmosphere during the Holocene, but also a change in the social relations of production to allow for hoarding privatized resources. In the 20th and 21st centuries, ethnographic and archaeological research shows that modern and ancient peoples adopt or even revert to hunting and gathering after having engaged in agricultural or industrial pursuits when conditions allow and that macroeconomic perspectives often mask considerable intragroup diversity in economic decision making: the pursuits and goals of women versus men and young versus old within groups are often quite different or even at odds with one another, but often articulate to form cohesive and adaptive economic wholes. The future of hunter-gatherer research will be tested by the continued decline in traditional hunting and gathering but will also benefit from observation of people who revert to or supplement their income with wild resources. It will also draw heavily from archaeology, which holds considerable potential to document and explain the full range of human behavioral diversity, hunter-gatherer or otherwise, over the longest of timeframes and the broadest geographic scope.

Article

Water Governance in the Netherlands  

M.L. (Marie Louise) Blankesteijn and W.D. (Wieke) Pot

Dutch water governance is world famous. It to a large extent determines the global public image of the Netherlands, with its windmills, polders, dikes and dams, and the eternal fight against the water, symbolized by the engineering marvel of the Delta Works. Dutch water governance has a history that dates back to the 11th century. Since the last 200 years, water governance has, however, undergone significant changes. Important historical events setting in motion longer-term developments for Dutch water governance were the Napoleonic rule, land reclamation projects, the Big Flood of 1953, the Afsluitdijk, the impoldering of the former Southern Sea, the ecological turn in water management, and the more integrated approach of “living with water.” In the current anthropocentric age, climate change presents a key challenge for Dutch water governance, as a country that for a large part is situated below sea level and is prone to flooding. The existing Dutch water governance system is multilevel, publicly financed, and, compared to many other countries, still relatively decentralized. The responsibilities for water management are shared among the national government and Directorate-General for Public Works and Water Management, provinces, regional water authorities, and municipalities. Besides these governmental layers, the Delta Commissioner is specifically designed to stimulate a forward-looking view when it comes to water management and climate change. With the Delta Commissioner and Delta Program, the Netherlands aims to become a climate-resilient and water-robust country in 2050. Robustness, adaptation, coordination, integration, and democratization are key ingredients of a future-proof water governance arrangement that can support a climate-resilient Dutch delta. In recent years, the Netherlands already has been confronted with many climate extremes and will need to transform its water management system to better cope with floods but even more so to deal with droughts and sea-levels rising. The latest reports of the Intergovernmental Panel for Climate Change show that more adaptive measures are needed. Such measures also require a stronger coordination between governmental levels, sectors, policies, and infrastructure investments. Furthermore, preparing for the future also requires engagement and integration with other challenges, such as the energy transition, nature conservation, and circular economy. To contribute to sustainability goals related to the energy transition and circular economy, barriers for technical innovation and changes to institutionalized responsibilities will need to be further analyzed and lifted. To govern for the longer term, current democratic institutions may not always be up to the task. Experiments with deliberative forms of democracy and novel ideas to safeguard the interests of future generations are to be further tested and researched to discover their potential for securing a more long-term oriented and integrated approach in water governance.

Article

Water Security  

Claudia Sadoff, David Grey, and Edoardo Borgomeo

Water security has emerged in the 21st century as a powerful construct to frame the water objectives and goals of human society and to support and guide local to global water policy and management. Water security can be described as the fundamental societal goal of water policy and management. This article reviews the concept of water security, explaining the differences between water security and other approaches used to conceptualize the water-related challenges facing society and ecosystems and describing some of the actions needed to achieve water security. Achieving water security requires addressing two fundamental challenges at all scales: enhancing water’s productive contributions to human and ecosystems’ well-being, livelihoods and development, and minimizing water’s destructive impacts on societies, economies, and ecosystems resulting, for example, from too much (flood), too little (drought) or poor quality (polluted) water.