Environmental accounting is an attempt to broaden the scope of the accounting frameworks used to assess economic performance, to take stock of elements that are not recorded in public or private accounting books. These gaps occur because the various costs of using nature are not captured, being considered, in many cases, as externalities that can be forwarded to others or postponed. Positive externalities—the natural resource—are depleted with no recording in National Accounts (while companies do record them as depreciation elements). Depletion of renewable resource results in degradation of the environment, which adds to negative externalities resulting from pollution and fragmentation of cyclic and living systems. Degradation, or its financial counterpart in depreciation, is not recorded at all. Therefore, the indicators of production, income, consumption, saving, investment, and debts on which many economic decisions are taken are flawed, or at least incomplete and sometimes misleading, when immediate benefits are in fact losses in the long run, when we consume the reproductive functions of our capital. Although national accounting has been an important driving force in change, environmental accounting encompasses all accounting frameworks including national accounts, financial accounting standards, and accounts established to assess the costs and benefits of plans and projects.
There are several approaches to economic environmental accounting at the national level. Of these approaches, one purpose is the calculation of genuine economic welfare by taking into account losses from environmental damage caused by economic activity and gains from unrecorded services provided by Nature. Here, particular attention is given to the calculation of a “Green GDP” or “Adjusted National Income” and/or “Genuine Savings” as well as natural assets value and depletion. A different view considers the damages caused to renewable natural capital and the resulting maintenance and restoration costs. Besides approaches based on benefits and costs, more descriptive accounts in physical units are produced with the purpose of assessing resource use efficiency. With regard to natural assets, the focus can be on assets directly used by the economy, or more broadly, on ecosystem capacity to deliver services, ecosystem resilience, and its possible degradation. These different approaches are not necessarily contradictory, although controversies can be noted in the literature.
The discussion focuses on issues such as the legitimacy of combining values obtained with shadow prices (needed to value the elements that are not priced by the market) with the transaction values recorded in the national accounts, the relative importance of accounts in monetary vs. physical units, and ultimately, the goals for environmental accounting. These goals include assessing the sustainability of the economy in terms of conservation (or increase) of the net income flow and total economic wealth (the weak sustainability paradigm), in relation to the sustainability of the ecosystem, which supports livelihoods and well-being in the broader sense (strong sustainability).
In 2012, the UN Statistical Commission adopted an international statistical standard called, the “System of Environmental-Economic Accounting Central Framework” (SEEA CF). The SEEA CF covers only items for which enough experience exists to be proposed for implementation by national statistical offices. A second volume on SEEA-Experimental Ecosystem Accounting (SEEA-EEA) was added in 2013 to supplement the SEEA CF with a research agenda and the development of tests. Experiments of the SEEA-EEA are developing at the initiative of the World Bank (WAVES), UN Environment Programme (VANTAGE, ProEcoServ), or the UN Convention on Biological Diversity (CBD) (SEEA-Ecosystem Natural Capital Accounts-Quick Start Package [ENCA-QSP]).
Beside the SEEA and in relation to it, other environmental accounting frameworks have been developed for specific purposes, including material flow accounting (MFA), which is now a regular framework at the Organisation for Economic Co-operation and Development (OECD) to report on the Green Growth strategy, the Intergovernmental Panel on Climate Change (IPCC) guidelines for the the UN Framework Convention on Climate Change (UNFCCC), reporting greenhouse gas emissions and carbon sequestration. Can be considered as well the Ecological Footprint accounts, which aim at raising awareness that our resource use is above what the planet can deliver, or the Millennium Ecosystem Assessment of 2005, which presents tables and an overall assessment in an accounting style. Environmental accounting is also a subject of interest for business, both as a way to assess impacts—costs and benefits of projects—and to define new accounting standards to assess their long term performance and risks.
Article
Environmental Accounting
Jean-Louis Weber
Article
Material and Energy Flow Analysis
Vincent Moreau and Guillaume Massard
The concept of metabolism takes root in biology and ecology as a systematic way to account for material flows in organisms and ecosystems. Early applications of the concept attempted to quantify the amount of water and food the human body processes to live and sustain itself. Similarly, ecologists have long studied the metabolism of critical substances and nutrients in ecological succession towards climax. With industrialization, the material and energy requirements of modern economic activities have grown exponentially, together with emissions to the air, water and soil. From an analogy with ecosystems, the concept of metabolism grew into an analytical methodology for economic systems.
Research in the field of material flow analysis has developed approaches to modeling economic systems by assessing the stocks and flows of substances and materials for systems defined in space and time. Material flow analysis encompasses different methods: industrial and urban metabolism, input–output analysis, economy-wide material flow accounting, socioeconomic metabolism, and more recently material flow cost accounting. Each method has specific scales, reference substances such as metals, and indicators such as concentration. A material flow analysis study usually consists of a total of four consecutive steps: (a) system definition, (b) data acquisition, (c) calculation, and (d) interpretation. The law of conservation of mass underlies every application, which implies that all material flows, as well as stocks, must be accounted for.
In the early 21st century, material depletion, accumulation, and recycling are well-established cases of material flow analysis. Diagnostics and forecasts, as well as historical or backcast analyses, are ideally performed in a material flow analysis, to identify shifts in material consumption for product life cycles or physical accounting and to evaluate the material and energy performance of specific systems.
In practice, material flow analysis supports policy and decision making in urban planning, energy planning, economic and environmental performance, development of industrial symbiosis and eco industrial parks, closing material loops and circular economy, pollution remediation/control and material and energy supply security. Although material flow analysis assesses the amount and fate of materials and energy rather than their environmental or human health impacts, a tacit assumption states that reduced material throughputs limit such impacts.
Article
Multi-Objective Robust Planning Tools
Jazmin Zatarain Salazar, Andrea Castelletti, and Matteo Giuliani
Shared water resource systems spark a number of conflicts related to their multi sectorial, regional, and intergenerational use. They are also vulnerable to a myriad of uncertainties stemming from changes in the hydrology, population demands, and climate change. Planning and management under these conditions are extremely challenging. Fortunately, our capability to approach these problems has evolved dramatically over the last few decades. Increased computational power enables the testing of multiple hypotheses and expedites the results across a range of planning alternatives. Advances in flexible multi-objective optimization tools facilitate the analyses of many competing interests. Further, major shifts in the way uncertainties are treated allow analysts to characterize candidate planning alternatives by their ability to fail or succeed instead of relying on fallible predictions. Embracing the fact that there are indeterminate uncertainties whose probabilistic descriptions are unknown, and acknowledging relationships whose actions and outcomes are not well-characterized in planning problems, have improved our ability to perform diligent analysis. Multi-objective robust planning of water systems emerged in response to the need to support planning and management decisions that are better prepared for unforeseen future conditions and that can be adapted to changes in assumptions. A suite of robustness frameworks has emerged to address planning and management problems in conditions of deep uncertainty. That is, events not readily identified or that we know so little about that their likelihood of occurrence cannot be described. Lingering differences remain within existing frameworks. These differences are manifested in the way in which alternative plans are specified, the views about how the future will unfold, and how the fitness of candidate planning strategies is assessed. Differences in the experimental design can yield diverging conclusions about the robustness and vulnerabilities of a system. Nonetheless, the means to ask a suite of questions and perform a more ambitious analysis is available in the early 21st century. Future challenges will entail untangling different conceptions about uncertainty, defining what aspects of the system are important and to whom, and how these values and assumptions will change over time.