1-6 of 6 Results  for:

  • Environmental Issues and Problems x
  • Environmental Processes and Systems x
Clear all

Article

Air Pollution and Weather Interaction in East Asia  

Aijun Ding, Xin Huang, and Congbin Fu

Air pollution is one of the grand environmental challenges in developing countries, especially those with high population density like China. High concentrations of primary and secondary trace gases and particulate matter (PM) are frequently observed in the industrialized and urbanized regions, causing negative effects on the health of humans, plants, and the ecosystem. Meteorological conditions are among the most important factors influencing day-to-day air quality. Synoptic weather and boundary layer dynamics control the dispersion capacity and transport of air pollutants, while the main meteorological parameters, such as air temperature, radiation, and relative humidity, influence the chemical transformation of secondary air pollutants at the same time. Intense air pollution, especially high concentration of radiatively important aerosols, can substantially influence meteorological parameters, boundary layer dynamics, synoptic weather, and even regional climate through their strong radiative effects. As one of the main monsoon regions, with the most intense human activities in the world, East Asia is a region experiencing complex air pollution, with sources from anthropogenic fossil fuel combustion, biomass burning, dust storms, and biogenic emissions. A mixture of these different plumes can cause substantial two-way interactions and feedbacks in the formation of air pollutants under various weather conditions. Improving the understanding of such interactions needs more field measurements using integrated multiprocess measurement platforms, as well as more efforts in developing numerical models, especially for those with online coupled processes. All these efforts are very important for policymaking from the perspectives of environmental protection and mitigation of climate change.

Article

Arid Environments  

Julie Laity

Arid environments cover about one third of the Earth’s surface, comprising the most extensive of the terrestrial biomes. Deserts show considerable individual variation in climate, geomorphic surface expression, and biogeography. Climatically, deserts range from dry interior environments, with large temperature ranges, to humid and relatively cool coastal environments, with small temperature ranges. What all deserts share in common is a consistent deficit of precipitation relative to water loss by evaporation, implying that the biological availability of water is very low. Deserts develop because of climatic (persistent high-pressure cells), topographic (mountain ranges that cause rain shadow effects), and oceanographic (cold currents) factors that limit the amount of rain or snowfall that a region receives. Most global deserts are subtropical in distribution. There is a large range of geomorphic surfaces, including sand sheets and sand seas (ergs), stone pavements, bedrock outcrops, dry lakebeds, and alluvial fans. Vegetation cover is generally sparse, but may be enhanced in areas of groundwater seepage or along river courses. The limited vegetation cover affects fluvial and slope processes and results in an enhanced role for the wind. While the majority of streams in deserts are ephemeral features, both intermittent and perennial rivers develop in response to snowmelt in nearby mountains or runoff from distant, more well-watered regions. Most drainage is endoreic, meaning that it flows internally into closed basins and does not reach the sea, being disposed of by seepage and evaporation. The early study of deserts was largely descriptive. More process-based studies commenced with the study of North American deserts in the mid- to late-1800s. Since the late 20th century, research has expanded into many areas of the world, with notable contributions coming from China, but our knowledge of deserts is still more compete in regions such as North America, Australia, Israel, and southern Africa, where access and funding have been more consistently secure. The widespread availability of high-quality remotely sensed images has contributed to the spread of study into new global field areas. The temporal framework for research has also improved, benefiting from improvements in geochronological techniques. Geochronological controls are vital to desert research because most arid regions have experienced significant climatic changes. Deserts have not only expanded or contracted in size, but have experienced changes in the dominant geomorphic processes and biogeographic environment. Contemporary scientific work has also benefited from improvements in technology, notably in surveying techniques, and from the use of quantitative modeling.

Article

Causes of Soil Salinization, Sodification, and Alkalinization  

Elisabeth N. Bui

Driving forces for natural soil salinity and alkalinity are climate, rock weathering, ion exchange, and mineral equilibria reactions that ultimately control the chemical composition of soil and water. The major weathering reactions that produce soluble ions are tabled. Where evapotranspiration is greater than precipitation, downward water movement is insufficient to leach solutes out of the soil profile and salts can precipitate. Microbes involved in organic matter mineralization and thus the carbon, nitrogen, and sulfur biogeochemical cycles are also implicated. Seasonal contrast and evaporative concentration during dry periods accelerate short-term oxidation-reduction reactions and local and regional accumulation of carbonate and sulfur minerals. The presence of salts and alkaline conditions, together with the occurrence of drought and seasonal waterlogging, creates some of the most extreme soil environments where only specially adapted organisms are able to survive. Sodic soils are alkaline, rich in sodium carbonates, with an exchange complex dominated by sodium ions. Such sodic soils, when low in other salts, exhibit dispersive behavior, and they are difficult to manage for cropping. Maintaining the productivity of sodic soils requires control of the flocculation-dispersion behavior of the soil. Poor land management can also lead to anthropogenically induced secondary salinity. New developments in physical chemistry are providing insights into ion exchange and how it controls flocculation-dispersion in soil. New water and solute transport models are enabling better options of remediation of saline and/or sodic soils.

Article

Global-Scale Impact of Human Nitrogen Fixation on Greenhouse Gas Emissions  

Wim De Vries, Enzai Du, Klaus Butterbach Bahl, Lena Schulte Uebbing, and Frank Dentener

Human activities have rapidly accelerated global nitrogen (N) cycling since the late 19th century. This acceleration has manifold impacts on ecosystem N and carbon (C) cycles, and thus on emissions of the greenhouse gases nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4), which contribute to climate change. First, elevated N use in agriculture leads to increased direct N2O emissions. Second, it leads to emissions of ammonia (NH3), nitric oxide (NO), and nitrogen dioxide (NO2) and leaching of nitrate (NO3−), which cause indirect N2O emissions from soils and waterbodies. Third, N use in agriculture may also cause changes in CO2 exchange (emission or uptake) in agricultural soils due to N fertilization (direct effect) and in non-agricultural soils due to atmospheric NHx (NH3+NH4) deposition (indirect effect). Fourth, NOx (NO+NO2) emissions from combustion processes and from fertilized soils lead to elevated NOy (NOx+ other oxidized N) deposition, further affecting CO2 exchange. As most (semi-) natural terrestrial ecosystems and aquatic ecosystems are N limited, human-induced atmospheric N deposition usually increases net primary production (NPP) and thus stimulates C sequestration. NOx emissions, however, also induce tropospheric ozone (O3) formation, and elevated O3 concentrations can lead to a reduction of NPP and plant C sequestration. The impacts of human N fixation on soil CH4 exchange are insignificant compared to the impacts on N2O and CO2 exchange (emissions or uptake). Ignoring shorter lived components and related feedbacks, the net impact of human N fixation on climate thus mainly depends on the magnitude of the cooling effect of CO2 uptake as compared to the magnitude of the warming effect of (direct and indirect) N2O emissions. The estimated impact of human N fixation on N2O emission is 8.0 (7.0–9.0) Tg N2O-N yr−1, which is equal 1.02 (0.89–1.15) Pg CO2-C equivalents (eq) yr−1. The estimated CO2 uptake due to N inputs to terrestrial, freshwater, and marine ecosystems equals −0.75 (−0.56 to −0.97) Pg CO2-C eq yr−1. At present, the impact of human N fixation on increased CO2 sequestration thus largely (on average near 75%) compensates the stimulating effect on N2O emissions. In the long term, however, effects on ecosystem CO2 sequestration are likely to diminish due to growth limitations by other nutrients such as phosphorus. Furthermore, N-induced O3 exposure reduces CO2 uptake, causing a net C loss at 0.14 (0.07–0.21) Pg CO2-C eq yr−1. Consequently, human N fixation causes an overall increase in net greenhouse gas emissions from global ecosystems, which is estimated at 0.41 (−0.01–0.80) Pg CO2-C eq yr−1. Even when considering all uncertainties, it is likely that human N inputs lead to a net increase in global greenhouse gas emissions. These estimates are based on most recent science and modeling approaches with respect to: (i) N inputs to various ecosystems, including NH3 and NOx emission estimates and related atmospheric N (NH3 and NOx) deposition and O3 exposure; (ii) N2O emissions in response to N inputs; and (iii) carbon exchange in responses to N inputs (C–N response) and O3 exposure (C–O3 response), focusing on the global scale. Apart from presenting the current knowledge, this article also gives an overview of changes in the estimates of those fluxes and C–N response factors over time, including debates on C–N responses in literature, the uncertainties in the various estimates, and the potential for improving them.

Article

Infiltration of Water Into Soil  

John Nimmo and Rose Shillito

The infiltration of water into soil has profound importance as a central component of the hydrologic cycle and as the means of replenishing soil water that sustains terrestrial life. Systematic quantitative study of infiltration began in the 19th century and has continued through to the present as a central topic of soils, soil physics, and hydrology. Two forces drive infiltration: gravity, and capillarity, which results from the interaction of air-water surface tension with the solid components of soil. There are also two primary ways water moves into and within the soil. One is diffuse flow, through the pores between individual soil grains, moving from one to the next and so on. The other is preferential flow, through elongated channels such as those left by worms and roots. Diffuse flow is slow and continues as long as there is a net driving force. Preferential flow is fast and occurs only when water is supplied at high intensity, as during irrigation, major rainstorms, or floods. Both types are important in infiltration. Especially considering that preferential flow does not yet have a fully accepted theory, this means that infiltration entails multiple processes, some of them poorly understood. The soil at a given location has a limit to how much water it can absorb—the infiltration capacity. The interplay between the mode and rate of water supply, infiltration capacity, and characteristics of the soil and surrounding terrain determines infiltration into the soil. Much effort has gone into developing means of measuring and predicting both infiltration capacity and the actual infiltration rate. Various methods are available, and research is needed to improve their accuracy and ease of use.

Article

Nutrient Pollution and Wastewater Treatment Systems  

Archis R. Ambulkar

Since the industrial revolution, societies across the globe have observed significant urbanization and population growth. Newer technologies, industries, and manufacturing plants have evolved over the period to develop sophisticated infrastructures and amenities for mankind. To achieve this, communities have utilized and exploited natural resources, resulting in sustained environmental degradation and pollution. Among various adverse ecological effects, nutrient contamination in water is posing serious problems for the water bodies worldwide. Nitrogen and phosphorus are the basic constituents for the growth and reproduction of living organisms and occur naturally in the soil, air, and water. However, human activities are affecting their natural cycles and causing excessive dumping into the surface and groundwater systems. Higher concentrations of nitrogen and phosphorus-based nutrients in water resources lead to eutrophication, reduction in sunlight, lower dissolved oxygen levels, changing rates of plant growth, reproduction patterns, and overall deterioration of water quality. Economically, this pollution can impact the fishing industry, recreational businesses, property values, and tourism. Also, using nutrient-polluted lakes or rivers as potable water sources may result in excess nitrates in drinking water, production of disinfection by-products, and associated health effects. Nutrients contamination in water commonly originates from point and non-point sources. Point sources are the specific discharge locations, like wastewater treatment plants (WWTP), industries, and municipal waste systems; whereas, non-point sources are discrete dischargers, like agricultural lands and storm water runoffs. Compared to non-point sources, point sources are easier to identify, regulate, and treat. WWTPs receive sewage from domestic, business, and industrial settings. With growing pollution concerns, nutrients removal and recovery at treatment plants is gaining significant attention. Newer chemical and biological nutrient removal processes are emerging to treat wastewater. Nitrogen removal mainly involves nitrification-denitrification processes; whereas, phosphorus removal includes biological uptake, chemical precipitation, or filtration. In regards to non-point sources, authorities are encouraging best management practices to control pollution loads to waterways. Governments are opting for novel strategies like source nutrient reduction schemes, bioremediation processes, stringent effluent limits, and nutrient trading programs. Source nutrient reduction strategies such as discouraging or banning use of phosphorus-rich detergents and selective chemicals, industrial pretreatment programs, and stormwater management programs can be effective by reducing nutrient loads to WWTPs. Bioremediation techniques such as riparian areas, natural and constructed wetlands, and treatment ponds can capture nutrients from agricultural lands or sewage treatment plant effluents. Nutrient trading programs allow purchase/sale of equivalent environmental credits between point and non-point nutrient dischargers to manage overall nutrient discharges in watersheds at lower costs. Nutrient pollution impacts are quite evident and documented in many parts of the world. Governments and environmental organizations are undertaking several waterways remediation projects to improve water quality and restore aquatic ecosystems. Shrinking freshwater reserves and rising water demands are compelling communities to make efficient use of the available water resources. With smarter choices and useful strategies, nutrient pollution in the water can be contained to a reasonable extent. As responsible members of the community, it is important for us to understand this key environmental issue as well as to learn the current and future needs to alleviate this problem.