Groundwater is a critical natural resource, but the law has always struggled with it. During the 19th and early 20th centuries, the common law developed several doctrines to allocate groundwater among competing users. The groundwater revolution of the mid-20th century produced an explosive growth in pumping worldwide—and quickly exposed the flaws of these doctrines. Legal rules predicated on land and on surface waters could not meet the challenges posed by the common-pool groundwater resource: those of understanding groundwater dynamics, quantifying the impacts of pumping on other water rights, and devising satisfactory remedies. Unfettered by received property restraints, pumping on an industrial, aquifer-wide scale depleted and contaminated aquifers, regardless of doctrine.
The groundwater revolution motivated significant legal developments. Starting in the 1970s, the Supreme Court of the United States adapted its methods for resolving interstate water disputes to include the effects of groundwater pumping. This jurisprudence has fundamentally influenced international groundwater law, including the negotiation of trans-boundary aquifer agreements. Advances in hydrogeology and computer groundwater modeling have enabled states and parties to evaluate the effects of basin-wide pumping. Nonetheless, difficult legal and governance problems remain. Which level of government—local, state, or national—should exercise jurisdiction over groundwater? What level of pumping qualifies as “safe yield,” especially when the aquifer is overdrawn? How do the demands of modern environmental law and the public trust doctrine affect groundwater rights? How can governments satisfy long-neglected claims to water justice made by Indigenous and minority communities? Innovations in groundwater management provide promising answers. The conjunctive management of surface and groundwater can stabilize water supplies, improve water quality, and protect ecosystems. Integrated water resources management seeks to holistically manage groundwater to achieve social and economic equity. Water markets can reward water conservation, attract new market participants, and encourage the migration of groundwater allocations to more valuable uses, including environmental uses.
The modern law of groundwater allocation combines older property doctrines with 21st-century regulatory ideals, but the mixture can be unstable. In nations with long-established water codes such as the United States, common-law Anglophone nations, and various European nations, groundwater law has evolved, if haltingly, to incorporate permitting systems, environmental regulation, and water markets. Elsewhere, the challenges are extreme. Long-standing calls for groundwater reform in India remain unheeded as tens of millions of unregulated tube wells pump away. In China, chronic groundwater mismanagement and aquifer contamination belie the roseate claims of national water law. Sub-Saharan nations have enacted progressive groundwater laws, but poverty, racism, and corruption have maintained grim groundwater realities. Across the field, experts have long identified the central problems and reached a rough consensus about the most effective solutions; there is also a common commitment to secure environmental justice and protect groundwater-dependent ecosystems. The most pressing legal work thus requires building practical pathways to reach these solutions and, most importantly, to connect the public with the groundwater on which it increasingly depends.
Article
The Allocation of Groundwater: From Superstition to Science
Burke W. Griggs
Article
Bioeconomic Models
Ihtiyor Bobojonov
Bioeconomic models are analytical tools that integrate biophysical and economic models. These models allow for analysis of the biological and economic changes caused by human activities. The biophysical and economic components of these models are developed based on historical observations or theoretical relations. Technically these models may have various levels of complexity in terms of equation systems considered in the model, modeling activities, and programming languages. Often, biophysical components of the models include crop or hydrological models. The core economic components of these models are optimization or simulation models established according to neoclassical economic theories. The models are often developed at farm, country, and global scales, and are used in various fields, including agriculture, fisheries, forestry, and environmental sectors. Bioeconomic models are commonly used in research on environmental externalities associated with policy reforms and technological modernization, including climate change impact analysis, and also explore the negative consequences of global warming. A large number of studies and reports on bioeconomic models exist, yet there is a lack of studies describing the multiple uses of these models across different disciplines.
Article
Crop Rotation and Climate Change Adaptation in Argentina’s Agriculture Sector
Ariel R. Angeli, Federico E. Bert, Sandro Díez-Amigo, Yuri Soares, Jaquelina M. Chaij, Gustavo D. Martini, F. Martín Montané, Alejandro Pardo Vegezzi, and Federico Schmidt
During the past two decades, extensive agriculture, particularly soybean production, has progressively replaced other crops in Argentina. This transformation was driven by economic, technological, environmental, and organizational factors, such as the increasing demand for agricultural commodities, technological advances, organizational innovations, and climate fluctuations. The expansion of soybean production has brought a substantial increase in agricultural revenue for Argentina. However, the predominance of soybean cultivation poses significant challenges, such as diminished soil fertility, reduction and increased variability in crop yields, ecological imbalance, increased greenhouse gas (GHG) emissions, and vulnerability to climate change.
Crop rotation, particularly balanced crop rotation, may result in very large positive impacts on soybean yields, especially in unfavorable climatic conditions such as those experienced during the La Niña ENSO phase in Argentina. In addition to this positive impact on agricultural productivity and climate adaptation, in some contexts crop rotation may also contribute to the reduction of GHG emissions, increased input energy efficiency, and improved environmental outcomes.
The 2018 Argentinian Association of Regional Consortia for Agricultural Experimentation and Inter-American Development Bank (AACREA-IADB) Integrated Crop Rotation Database compiled and harmonized the information from agricultural diaries kept by Regional Consortia for Agricultural Experimentation (CREA) members in Argentina from 1998 to 2016. This new consolidated data set has replaced previous regional templates, and it is expected to continue to be expanded with new information periodically, offering opportunities for further research on the impact of crop rotation on climate adaptation and on other topics in agricultural and environmental economics.