It’s complicated. Tropical diseases have unusually intricate life cycles because most of them involve not only a human host and a pathogen, but also a vector host. The diseases are predominantly tropical due to their sensitivity to local ecology, usually due to the vector organism. The differences between the tropical diseases mean that they respond to environmental degradation in various ways that depend on local conditions. Urbanization and water pollution tend to limit malaria, but deforestation and dams can exacerbate malaria and schistosomiasis. Global climate change, the largest environmental change, will likely extend the range of tropical climate conditions to higher elevations and near the limits of the tropics, spreading some diseases, but will make other areas too dry or hot for the vectors. Nonetheless, the geographical range of tropical diseases will be primarily determined by public health efforts more than climate. Early predictions that malaria will spread widely because of climate change were flawed, and control efforts will probably cause it to diminish further. The impact of human disease on economic development is hard to pin down with confidence. It may be substantial, or it may be misattributed to other influences. A mechanism by which tropical disease may have large development consequences is its deleterious effects on the cognitive development of infants, which makes them less productive throughout their lives.
Article
Environmental Degradation, Tropical Diseases, and Economic Development
John Luke Gallup
Article
Valuing the Benefits of Green Stormwater Infrastructure
Amy W. Ando and Noelwah R. Netusil
Green stormwater infrastructure (GSI), a decentralized approach for managing stormwater that uses natural systems or engineered systems mimicking the natural environment, is being adopted by cities around the world to manage stormwater runoff. The primary benefits of such systems include reduced flooding and improved water quality. GSI projects, such as green roofs, urban tree planting, rain gardens and bioswales, rain barrels, and green streets may also generate cobenefits such as aesthetic improvement, reduced net CO2 emissions, reduced air pollution, and habitat improvement. GSI adoption has been fueled by the promise of environmental benefits along with evidence that GSI is a cost-effective stormwater management strategy, and methods have been developed by economists to quantify those benefits to support GSI planning and policy efforts. A body of multidisciplinary research has quantified significant net benefits from GSI, with particularly robust evidence regarding green roofs, urban trees, and green streets. While many GSI projects generate positive benefits through ecosystem service provision, those benefits can vary with details of the location and the type and scale of GSI installation. Previous work reveals several pitfalls in estimating the benefits of GSI that scientists should avoid, such as double counting values, counting transfer payments as benefits, and using values for benefits like avoided carbon emissions that are biased. Important gaps remain in current knowledge regarding the benefits of GSI, including benefit estimates for some types of GSI elements and outcomes, understanding how GSI benefits last over time, and the distribution of GSI benefits among different groups in urban areas.