1-10 of 10 Results  for:

  • Agriculture and the Environment x
  • Environmental Issues and Problems x
Clear all

Article

Driving forces for natural soil salinity and alkalinity are climate, rock weathering, ion exchange, and mineral equilibria reactions that ultimately control the chemical composition of soil and water. The major weathering reactions that produce soluble ions are tabled. Where evapotranspiration is greater than precipitation, downward water movement is insufficient to leach solutes out of the soil profile and salts can precipitate. Microbes involved in organic matter mineralization and thus the carbon, nitrogen, and sulfur biogeochemical cycles are also implicated. Seasonal contrast and evaporative concentration during dry periods accelerate short-term oxidation-reduction reactions and local and regional accumulation of carbonate and sulfur minerals. The presence of salts and alkaline conditions, together with the occurrence of drought and seasonal waterlogging, creates some of the most extreme soil environments where only specially adapted organisms are able to survive. Sodic soils are alkaline, rich in sodium carbonates, with an exchange complex dominated by sodium ions. Such sodic soils, when low in other salts, exhibit dispersive behavior, and they are difficult to manage for cropping. Maintaining the productivity of sodic soils requires control of the flocculation-dispersion behavior of the soil. Poor land management can also lead to anthropogenically induced secondary salinity. New developments in physical chemistry are providing insights into ion exchange and how it controls flocculation-dispersion in soil. New water and solute transport models are enabling better options of remediation of saline and/or sodic soils.

Article

Soil salinity has been causing problems for agriculturists for millennia, primarily in irrigated lands. The importance of salinity issues is increasing, since large areas are affected by irrigation-induced salt accumulation. A wide knowledge base has been collected to better understand the major processes of salt accumulation and choose the right method of mitigation. There are two major types of soil salinity that are distinguished because of different properties and mitigation requirements. The first is caused mostly by the large salt concentration and is called saline soil, typically corresponding to Solonchak soils. The second is caused mainly by the dominance of sodium in the soil solution or on the soil exchange complex. This latter type is called “sodic” soil, corresponding to Solonetz soils. Saline soils have homogeneous soil profiles with relatively good soil structure, and their appropriate mitigation measure is leaching. Naturally sodic soils have markedly different horizons and unfavorable physical properties, such as low permeability, swelling, plasticity when wet, and hardness when dry, and their limitation for agriculture is mitigated typically by applying gypsum. Salinity and sodicity need to be chemically quantified before deciding on the proper management strategy. The most complex management and mitigation of salinized irrigated lands involves modern engineering including calculations of irrigation water rates and reclamation materials, provisions for drainage, and drainage disposal. Mapping-oriented soil classification was developed for naturally saline and sodic soils and inherited the first soil categories introduced more than a century ago, such as Solonchak and Solonetz in most of the total of 24 soil classification systems used currently. USDA Soil Taxonomy is one exception, which uses names composed of formative elements.

Article

Confidence in the projected impacts of climate change on agricultural systems has increased substantially since the first Intergovernmental Panel on Climate Change (IPCC) reports. In Africa, much work has gone into downscaling global climate models to understand regional impacts, but there remains a dearth of local level understanding of impacts and communities’ capacity to adapt. It is well understood that Africa is vulnerable to climate change, not only because of its high exposure to climate change, but also because many African communities lack the capacity to respond or adapt to the impacts of climate change. Warming trends have already become evident across the continent, and it is likely that the continent’s 2000 mean annual temperature change will exceed +2°C by 2100. Added to this warming trend, changes in precipitation patterns are also of concern: Even if rainfall remains constant, due to increasing temperatures, existing water stress will be amplified, putting even more pressure on agricultural systems, especially in semiarid areas. In general, high temperatures and changes in rainfall patterns are likely to reduce cereal crop productivity, and new evidence is emerging that high-value perennial crops will also be negatively impacted by rising temperatures. Pressures from pests, weeds, and diseases are also expected to increase, with detrimental effects on crops and livestock. Much of African agriculture’s vulnerability to climate change lies in the fact that its agricultural systems remain largely rain-fed and underdeveloped, as the majority of Africa’s farmers are small-scale farmers with few financial resources, limited access to infrastructure, and disparate access to information. At the same time, as these systems are highly reliant on their environment, and farmers are dependent on farming for their livelihoods, their diversity, context specificity, and the existence of generations of traditional knowledge offer elements of resilience in the face of climate change. Overall, however, the combination of climatic and nonclimatic drivers and stressors will exacerbate the vulnerability of Africa’s agricultural systems to climate change, but the impacts will not be universally felt. Climate change will impact farmers and their agricultural systems in different ways, and adapting to these impacts will need to be context-specific. Current adaptation efforts on the continent are increasing across the continent, but it is expected that in the long term these will be insufficient in enabling communities to cope with the changes due to longer-term climate change. African famers are increasingly adopting a variety of conservation and agroecological practices such as agroforestry, contouring, terracing, mulching, and no-till. These practices have the twin benefits of lowering carbon emissions while adapting to climate change as well as broadening the sources of livelihoods for poor farmers, but there are constraints to their widespread adoption. These challenges vary from insecure land tenure to difficulties with knowledge-sharing. While African agriculture faces exposure to climate change as well as broader socioeconomic and political challenges, many of its diverse agricultural systems remain resilient. As the continent with the highest population growth rate, rapid urbanization trends, and rising GDP in many countries, Africa’s agricultural systems will need to become adaptive to more than just climate change as the uncertainties of the 21st century unfold.

Article

There are continuing developments in the analysis of hunger and famines, and the results of theoretical and empirical studies of hunger and food insecurity highlight cases where hunger intensifies sufficiently to be identified as famine. The varying ability of those affected to cope with the shocks and stresses imposed on them are central to the development of food insecurity and the emergence of famine conditions and to explaining the complex interrelationships between agriculture, famine, and economics. There are a number of approaches to understanding how famines develop. The Malthusian approach, which sees population growth as the primary source of hunger and famine, can be contrasted with the free market or Smithian approach, which regards freely operating markets as an essential prerequisite for ensuring that famine can be overcome. A major debate has centered on whether famines primarily emerge from a decline in the availability of food or are a result of failure by households to access sufficient food for consumption, seeking to distinguish between famine as a problem related to food production and availability and famine as a problem of declining income and food consumption among certain groups in the population. These declines arise from the interaction between food markets, labor markets and markets for livestock and other productive farm resources when poor people try to cope with reduced food consumption. Further revisions to famine analysis were introduced from the mid-1990s by authors who interpreted the emergence of famines not as a failure in markets and the economic system, but more as a failure in political accountability and humanitarian response. These approaches have the common characteristic that they seek to narrow the focus of investigation to one or a few key characteristics. Yet most of those involved in famine analysis or famine relief would stress the multi-faceted and broad-based nature of the perceived causes of famine and the mechanisms through which they emerge. In contrast to these approaches, the famine systems approach takes a broader view, exploring insights from systems theory to understand how famines develop and especially how this development might be halted, reversed, or prevented. Economists have contributed to and informed different perspectives on famine analysis while acknowledging key contributions from moral philosophy as well as from biological and physical sciences and from political and social sciences. Malthus, Smith, and John Stuart Mill contributed substantially to early thinking on famine causation and appropriate famine interventions. Increased emphasis on famine prevention and a focus on food production and productivity led to the unarguable success of the Green Revolution. An important shift in thinking in the 1980s was motivated by Amartya Sen’s work on food entitlements and on markets for food and agricultural resources. On the other hand, the famine systems approach considers famine as a process governed by complex relationships and seeks to integrate contributions from economists and other scientists while promoting a systems approach to famine analysis.

Article

Dominic Moran and Jorie Knook

Climate change is already having a significant impact on agriculture through greater weather variability and the increasing frequency of extreme events. International policy is rightly focused on adapting and transforming agricultural and food production systems to reduce vulnerability. But agriculture also has a role in terms of climate change mitigation. The agricultural sector accounts for approximately a third of global anthropogenic greenhouse gas emissions, including related emissions from land-use change and deforestation. Farmers and land managers have a significant role to play because emissions reduction measures can be taken to increase soil carbon sequestration, manage fertilizer application, and improve ruminant nutrition and waste. There is also potential to improve overall productivity in some systems, thereby reducing emissions per unit of product. The global significance of such actions should not be underestimated. Existing research shows that some of these measures are low cost relative to the costs of reducing emissions in other sectors such as energy or heavy industry. Some measures are apparently cost-negative or win–win, in that they have the potential to reduce emissions and save production costs. However, the mitigation potential is also hindered by the biophysical complexity of agricultural systems and institutional and behavioral barriers limiting the adoption of these measures in developed and developing countries. This includes formal agreement on how agricultural mitigation should be treated in national obligations, commitments or targets, and the nature of policy incentives that can be deployed in different farming systems and along food chains beyond the farm gate. These challenges also overlap growing concern about global food security, which highlights additional stressors, including demographic change, natural resource scarcity, and economic convergence in consumption preferences, particularly for livestock products. The focus on reducing emissions through modified food consumption and reduced waste is a recent agenda that is proving more controversial than dealing with emissions related to production.

Article

David E. Clay, Sharon A. Clay, Thomas DeSutter, and Cheryl Reese

Since the discovery that food security could be improved by pushing seeds into the soil and later harvesting a desirable crop, agriculture and agronomy have gone through cycles of discovery, implementation, and innovation. Discoveries have produced predicted and unpredicted impacts on the production and consumption of locally produced foods. Changes in technology, such as the development of the self-cleaning steel plow in the 18th century, provided a critical tool needed to cultivate and seed annual crops in the Great Plains of North America. However, plowing the Great Plains would not have been possible without the domestication of plants and animals and the discovery of the yoke and harness. Associated with plowing the prairies were extensive soil nutrient mining, a rapid loss of soil carbon, and increased wind and water erosion. More recently, the development of genetically modified organisms (GMOs) and no-tillage planters has contributed to increased adoption of conservation tillage, which is less damaging to the soil. In the future, the ultimate impact of climate change on agronomic practices in the North American Great Plains is unknown. However, projected increasing temperatures and decreased rainfall in the southern Great Plains (SGP) will likely reduce agricultural productivity. Different results are likely in the northern Great Plains (NGP) where higher temperatures can lead to increased agricultural intensification, the conversion of grassland to cropland, increased wildlife fragmentation, and increased soil erosion. Precision farming, conservation, cover crops, and the creation of plants better designed to their local environment can help mitigate these effects. However, changing practices require that farmers and their advisers understand the limitations of the soils, plants, and environment, and their production systems. Failure to implement appropriate management practices can result in a rapid decline in soil productivity, diminished water quality, and reduced wildlife habitat.

Article

Growing a cover crop between main crops imitates natural ecosystems where the soil is continuously covered with vegetation. This is an important management practice in preserving soil nutrient resources and reducing nitrogen (N) losses to waters. Cover crops also provide other functions that are important for the resilience and long-term stability of cropping systems, such as reduced erosion, increased soil fertility, carbon sequestration, increased soil phosphorus (P) availability, and suppression of weeds and pathogens. Much is known about how to use cover crops to reduce N leaching, for climates where there is a water surplus outside the growing season. Non-legume cover crops reduce N leaching by 20%–80% and legumes reduce it by, on average, 23%. There are both synergies and possible conflicts between different environmental and production aspects that should be considered when developing efficient and multifunctional cover crop systems, but contradictions about different functions provided by cover crops can sometimes be overcome with site-specific adaptation of measures. One example is cover crop effects on P losses. Cover crops reduce losses of total P, but extract soil P to available forms and may increase losses of dissolved P. How to use this effect to increase soil P availability on subtropical soils needs further studies. Knowledge and examples of how to maximize the positive effects of cover crops on cropping systems are improving, thereby increasing the sustainability of agriculture. One example is combined weed suppression in order to reduce dependence on herbicides or intensive mechanical treatment.

Article

Pichu Rengasamy

Salt accumulation in soils, affecting agricultural productivity, environmental health, and the economy of the community, is a global phenomenon since the decline of ancient Mesopotamian civilization by salinity. The global distribution of salt-affected soils is estimated to be around 830 million hectares extending over all the continents, including Africa, Asia, Australasia, and the Americas. The concentration and composition of salts depend on several resources and processes of salt accumulation in soil layers. Major types of soil salinization include groundwater associated salinity, non–groundwater-associated salinity, and irrigation-induced salinity. There are several soil processes which lead to salt build-up in the root zone interfering with the growth and physiological functions of plants. Salts, depending on the ionic composition and concentration, can also affect many soil processes, such as soil water dynamics, soil structural stability, solubility of essential nutrients, and pH and pE of soil water—all indirectly hindering plant growth. The direct effect of salinity includes the osmotic effect affecting water and nutrient uptake and the toxicity or deficiency due to high concentration of certain ions. The plan of action to resolve the problems associated with soil salinization should focus on prevention of salt accumulation, removal of accumulated salts, and adaptation to a saline environment. Successful utilization of salinized soils needs appropriate soil and irrigation management and improvement of plants by breeding and genetic engineering techniques to tolerate different levels of salinity and associated abiotic stress.

Article

Soils are the complex, dynamic, spatially diverse, living, and environmentally sensitive foundations of terrestrial ecosystems as well as human civilizations. The modern, environmental study of soil is a truly young scientific discipline that emerged only in the late 19th century from foundations in agricultural chemistry, land resource mapping, and geology. Today, little more than a century later, soil science is a rigorously interdisciplinary field with a wide range of exciting applications in agronomy, ecology, environmental policy, geology, public health, and many other environmentally relevant disciplines. Soils form slowly, in response to five inter-related factors: climate, organisms, topography, parent material, and time. Consequently, many soils are chemically, biologically, and/or geologically unique. The profound importance of soil, combined with the threats of erosion, urban development, pollution, climate change, and other factors, are now prompting soil scientists to consider the application of endangered species concepts to rare or threatened soil around the world.

Article

Claudia Sadoff, David Grey, and Edoardo Borgomeo

Water security has emerged in the 21st century as a powerful construct to frame the water objectives and goals of human society and to support and guide local to global water policy and management. Water security can be described as the fundamental societal goal of water policy and management. This article reviews the concept of water security, explaining the differences between water security and other approaches used to conceptualize the water-related challenges facing society and ecosystems and describing some of the actions needed to achieve water security. Achieving water security requires addressing two fundamental challenges at all scales: enhancing water’s productive contributions to human and ecosystems’ well-being, livelihoods and development, and minimizing water’s destructive impacts on societies, economies, and ecosystems resulting, for example, from too much (flood), too little (drought) or poor quality (polluted) water.