1-20 of 36 Results  for:

  • Sustainability and Solutions x
Clear all

Article

Tamara Shapiro Ledley, Juliette Rooney-Varga, and Frank Niepold

The scientific community has made the urgent need to mitigate climate change clear and, with the ratification of the Paris Agreement under the United Nations Framework Convention on Climate Change, the international community has formally accepted ambitious mitigation goals. However, a wide gap remains between the aspirational emissions reduction goals of the Paris Agreement and the real-world pledges and actions of nations that are party to it. Closing that emissions gap can only be achieved if a similarly wide gap between scientific and societal understanding of climate change is also closed. Several fundamental aspects of climate change make clear both the need for education and the opportunity it offers. First, addressing climate change will require action at all levels of society, including individuals, organizations, businesses, local, state, and national governments, and international bodies. It cannot be addressed by a few individuals with privileged access to information, but rather requires transfer of knowledge, both intellectually and affectively, to decision-makers and their constituents at all levels. Second, education is needed because, in the case of climate change, learning from experience is learning too late. The delay between decisions that cause climate change and their full societal impact can range from decades to millennia. As a result, learning from education, rather than experience, is necessary to avoid those impacts. Climate change and sustainability represent complex, dynamic systems that demand a systems thinking approach. Systems thinking takes a holistic, long-term perspective that focuses on relationships between interacting parts, and how those relationships generate behavior over time. System dynamics includes formal mapping and modeling of systems, to improve understanding of the behavior of complex systems as well as how they respond to human or other interventions. Systems approaches are increasingly seen as critical to climate change education, as the human and natural systems involved in climate change epitomize a complex, dynamic problem that crosses disciplines and societal sectors. A systems thinking approach can also be used to examine the potential for education to serve as a vehicle for societal change. In particular, education can enable society to benefit from climate change science by transferring scientific knowledge across societal sectors. Education plays a central role in several processes that can accelerate social change and climate change mitigation. Effective climate change education increases the number of informed and engaged citizens, building social will or pressure to shape policy, and building a workforce for a low-carbon economy. Indeed, several climate change education efforts to date have delivered gains in climate and energy knowledge, affect, and/or motivation. However, society still faces challenges in coordinating initiatives across audiences, managing and leveraging resources, and making effective investments at a scale that is commensurate with the climate change challenge. Education is needed to promote informed decision-making at all levels of society.

Article

The terms “land cover” and “land use” are often used interchangeably, although they have different meanings. Land cover is the biophysical material at the surface of the Earth, whereas land use refers to how people use the land surface. Land use concerns the resources of the land, their products, and benefits, in addition to land management actions and activities. The history of changes in land use has passed through several major stages driven by developments in science and technology and demands for food, fiber, energy, and shelter. Modern changes in land use have been increasingly affected by anthropogenic activities at a scale and magnitude that have not been seen. These changes in land use are largely driven by population growth, urban expansion, increasing demands for energy and food, changes in diets and lifestyles, and changing socioeconomic conditions. About 70% of the Earth’s ice-free land surface has been altered by changes in land use, and these changes have had environmental impacts worldwide, ranging from effects on the composition of the Earth’s atmosphere and climate to the extensive modification of terrestrial ecosystems, habitats, and biodiversity. A number of different methods have been developed give a thorough understanding of these changes in land use and the multiple effects and feedbacks involved. Earth system observations and models are examples of two crucial technologies, although there are considerable uncertainties in both techniques. Cross-disciplinary collaborations are highly desirable in future studies of land use and management. The goals of mitigating climate change and maintaining sustainability should always be considered before implementing any new land management strategies.

Article

Carbon has been part of the Earth since its beginning, and the carbon cycle is well understood. However, its abundance in the atmosphere has become a problem. Those who propose solutions in decentralized market economies often prefer economic incentives to direct government regulation. Carbon cap-and-trade programs and carbon tax programs are the prime candidates to rein in emissions by altering the economic conditions under which producers and consumers make decisions. Under ideal conditions with full information, they can seamlessly remove the distortion caused by the negative externality and increase a society’s welfare. This distortion is caused by overproduction and underpricing of carbon-related goods and services. The ideal level of emissions would be set under cap-and-trade, or be the outcome of an ideally set carbon tax. The ideal price of carbon permits would result from demand generated by government decree meeting an ideal fixed supply set by the government. The economic benefit of using the ideal carbon tax or the ideal permit price occurs because heterogeneous decision-makers will conceptually reduce emissions to the level that equates their marginal (incremental) emissions-reduction cost to the tax or permit price. When applying the theory to the real world, ideal conditions with full information do not exist. The economically efficient levels of emissions, the carbon tax, and the permit price cannot be categorically determined. The targeted level of emissions is often proposed by non-economists. The spatial extent and time span of the emissions target need to be considered. The carbon tax is bound to be somewhat speculative, which does not bode well for private-sector decision-makers who have to adjust their behavior, and for the achievement of a particular emissions target. The permit price depends on how permits are initially distributed and how well the permit market is designed. The effectiveness of either program is tied to monitoring and enforcement. Social justice considerations in the operation of tax programs often include the condition that they be revenue-neutral. This is more complicated in the permit scheme as much activity after the initial phase is among the emitters themselves. Based on global measurement of greenhouse gases, several models have been created that attempt to explain how emissions transform into concentrations, how concentrations imply radiative forcing and global warming potential, how the latter cause ecological and economic impacts, and how mitigation and/or adaptation can influence these impacts. Scenarios of the uncertain future continue to be generated under myriad assumptions in the quest for the most reliable. Several institutions have worked to engender sustained cooperation among the parties of the “global commons.” The balance of theory and empirical observation is intended to generate normative and positive policy recommendations. Cap-and-trade and carbon tax programs have been designed and/or implemented by various countries and subnational jurisdictions with the hope of reducing carbon-related emissions. Many analysts have declared that the global human society will reach a “tipping point” in the 21st century, with irreversible trends that will alter life on Earth in significant ways.

Article

Johanna Brühl, Leonard le Roux, Martine Visser, and Gunnar Köhlin

The water crisis that gripped Cape Town over the 2016–2018 period gained global attention. For a brief period of time in early 2018, it looked as if the legislative capital of South Africa would become the first major city in the world to run out of water. The case of Cape Town has broad implications for how we think about water management in a rapidly urbanizing world. Cities in the global South, especially, where often under-capacitated urban utilities need to cope with rapid demographic changes, climate change, and numerous competing demands on their tight budgets, can learn from Cape Town’s experience. The case of Cape Town draws attention to the types of decisions policymakers and water utilities face in times of crisis. It illustrates how these decisions, while being unavoidable in the short term, are often sub-optimal in the long run. The Cape Town drought highlights the importance of infrastructure diversification, better groundwater management, and communication and information transparency to build trust with the public. It also shows what governance and institutional changes need to be made to ensure long-term water security and efficient water management. The implementation of all of these policies needs to address the increased variability of water supplies due to increasingly erratic rainfall and rapidly growing urban populations in many countries. This necessitates a long-term planning horizon.

Article

Dominic Moran and Jorie Knook

Climate change is already having a significant impact on agriculture through greater weather variability and the increasing frequency of extreme events. International policy is rightly focused on adapting and transforming agricultural and food production systems to reduce vulnerability. But agriculture also has a role in terms of climate change mitigation. The agricultural sector accounts for approximately a third of global anthropogenic greenhouse gas emissions, including related emissions from land-use change and deforestation. Farmers and land managers have a significant role to play because emissions reduction measures can be taken to increase soil carbon sequestration, manage fertilizer application, and improve ruminant nutrition and waste. There is also potential to improve overall productivity in some systems, thereby reducing emissions per unit of product. The global significance of such actions should not be underestimated. Existing research shows that some of these measures are low cost relative to the costs of reducing emissions in other sectors such as energy or heavy industry. Some measures are apparently cost-negative or win–win, in that they have the potential to reduce emissions and save production costs. However, the mitigation potential is also hindered by the biophysical complexity of agricultural systems and institutional and behavioral barriers limiting the adoption of these measures in developed and developing countries. This includes formal agreement on how agricultural mitigation should be treated in national obligations, commitments or targets, and the nature of policy incentives that can be deployed in different farming systems and along food chains beyond the farm gate. These challenges also overlap growing concern about global food security, which highlights additional stressors, including demographic change, natural resource scarcity, and economic convergence in consumption preferences, particularly for livestock products. The focus on reducing emissions through modified food consumption and reduced waste is a recent agenda that is proving more controversial than dealing with emissions related to production.

Article

Biological diversity refers to the variety of life on Earth, in all its forms and interactions. Biological diversity, or biodiversity for short, is being lost at an unprecedented rate. The International Union for Conservation of Nature (IUCN) Red List of Threatened Species estimates that 25% of mammals, 41% of amphibians, 33% of reef building corals, and 13% of birds are threatened with extinction. These biodiversity benefits are being lost due to conversion of natural habitat, overharvesting, pollution, invasive species, and climate change. The loss of biodiversity is important because it provides many critical resources, services, and ecosystem functions, such as foods, medicines, clean air, and storm protection. Biodiversity loss and ecosystem collapse pose a major risk to human societies and economic welfare. The CBD was established in 1992 at the United Nations Conference on Environment and Development (the Rio “Earth Summit”) and enacted in 1993. The international treaty aims to conserve biodiversity and ensure the sustainable use of the components of biodiversity and the equitable sharing of the benefits derived from the use of genetic resources. The CBD has near universal global participation with 196 parties signatory to the treaty. The non-legally binding commitments established in 2010 by the CBD are known as the Aichi Targets. They include the goal of conserving at least 17% of terrestrial and inland water habitats and 10% of coastal and marine areas by 2020. Biodiversity continues to decline at an unprecedented rate and the world faces “biological annihilation” and a sixth mass extinction event. There are several underlying causes of the continuing loss of biodiversity that need to be addressed. First, the CBD Aichi Targets are not ambitious enough and should be extended to protect as much as 50% of the terrestrial realm for biodiversity. Second, it is difficult to place an economic value on the range of direct, indirect, and nonuse values of biodiversity. The failure to take into account the full economic value of biodiversity in prices, projects, and policy decisions means that biodiversity is often misused and overused. Third, biodiversity is a global public good and displays nonrival and nonexcludable characteristics. Because of this, it is difficult to raise sufficient funds for conservation and to channel these funds to cover local conservation costs. In particular, much of the world’s biodiversity is located in (mainly tropical) developing countries, and they do not have the incentive or the funds to spend the money to “save” enough biodiversity on behalf of the rest of the world. The funding for global biodiversity conservation is $4–$10 billion annually, whereas around $100 billion a year is needed to protect the Earth’s broad range of animal and plant species. This funding gap undermines CBD’s conservation efforts. Governments and international organizations have been unable to raise the investments needed to reverse the decline in biological populations and habitats on land and in oceans. There is an important role for private-sector involvement in the CBD to endorse efforts for more sustainable use of biodiversity and to contribute funds to finance conservation and habitat protection efforts.

Article

Water scarcity has long been recognized as a key issue challenging China’s water security and sustainable development. Economically, China’s water scarcity can be characterized by the uneven distribution of limited water resources across space and time in hydrological cycles that are inconsistent with the rising demand for a sufficient, stable water supply from rapid socioeconomic development coupled with a big, growing population. The limited water availability or scarcity has led to trade-offs in water use and management across sectors and space, while negatively affecting economic growth and the environment. Meanwhile, inefficiency and unsustainability prevail in China’s water use, attributable to government failure to account for the socioeconomic nature of water and its scarcity beyond hydrology. China’s water supply comes mainly from surface water and groundwater. The nontraditional sources, wastewater reclamation and reuse in particular, have been increasingly contributing to water supply but are less explored. Modern advancement in solar and nuclear power development may help improve the potential and competitiveness of seawater desalination as an alternative water source. Nonetheless, technological measures to augment water supply can only play a limited role in addressing water scarcity, highlighting the necessity and importance of nontechnological measures and “soft” approaches for managing water. Water conservation, including improving water use efficiency, particularly in the agriculture sector, represents a reasonable strategy that has much potential but requires careful policy design. China’s water management has started to pay greater attention to market-based approaches, such as tradable water rights and water pricing, accompanied by management reforms. In the past, these approaches have largely been treated as command-and-control tools for regulation rather than as economic instruments following economic design principles. While progress has been made in promoting the market-based approaches, the institutional aspect needs to be further improved to create supporting and enabling conditions. For water markets, developing regulations and institutions, combined with clearly defining water use rights, is needed to facilitate market trading of water rights. For water pricing, appropriate design based on the full cost of water supply needs to be strengthened, and policy implementation must be enforced. An integrated approach is particularly relevant and greatly needed for China’s water management. This approach emphasizes integration and holistic consideration of water in relation to other resource management, development opportunities, and other policies across scales and sectors to achieve synergy, cost-effectiveness, multiple benefits, and eventually economic efficiency. Integrated water management has been increasingly applied, as exemplified by a national policy initiative to promote urban water resilience and sustainability. While economics can play a critical role in helping evaluate and compare alternative measures or design scenarios and in identifying multiple benefits, there is a need for economic or social cost–benefit analysis of China’s water policy or management that incorporates nonmarket costs and benefits.

Article

Water security forms the basis for achieving multi-dimensional poverty alleviation. Water security is necessary for moving toward sustainable development. It reduces poverty and improves quality of life. Achieving water security is increasingly becoming a policy challenge in most of the developing countries like India. Water security is a comprehensive concept that comprises access to quantity and quality for different users and uses, ensuring environmental, economic, and social sustainability in the long run. It needs to be achieved at different scales (i.e., household, regional, and national levels). This calls for an integrated approach incorporating hydrological, socioeconomic, and ecosystem aspects. Water resources accounting is critical for ensuring water security. Resource accounting helps in identifying efficient and optimum allocation of resources to various components of water security. Integrating the costs of strengthening the natural resource base and environmental externalities is likely to help sustaining services in the long run. Integrating the economics of protecting the natural resource base into the planning and designing of service delivery is critical in this regard.

Article

Boreal countries are rich in forest resources, and for their area, they produce a disproportionally large share of the lumber, pulp, and paper bound for the global market. These countries have long-standing strong traditions in forestry education and institutions, as well as in timber-oriented forest management. However, global change, together with evolving societal values and demands, are challenging traditional forest management approaches. In particular, plantation-type management, where wood is harvested with short cutting cycles relative to the natural time span of stand development, has been criticized. Such management practices create landscapes composed of mosaics of young, even-aged, and structurally homogeneous stands, with scarcity of old trees and deadwood. In contrast, natural forest landscapes are characterized by the presence of old large trees, uneven-aged stand structures, abundant deadwood, and high overall structural diversity. The differences between managed and unmanaged forests result from the fundamental differences in the disturbance regimes of managed versus unmanaged forests. Declines in managed forest biodiversity and structural complexity, combined with rapidly changing climatic conditions, pose a risk to forest health, and hence, to the long-term maintenance of biodiversity and provisioning of important ecosystem goods and services. The application of ecosystem management in boreal forestry calls for a transition from plantation-type forestry toward more diversified management inspired by natural forest structure and dynamics.

Article

Leon C. Braat

The concept of ecosystem services considers the usefulness of nature for human society. The economic importance of nature was described and analyzed in the 18th century, but the term ecosystem services was introduced only in 1981. Since then it has spurred an increasing number of academic publications, international research projects, and policy studies. Now a subject of intense debate in the global scientific community, from the natural to social science domains, it is also used, developed, and customized in policy arenas and considered, if in a still somewhat skeptical and apprehensive way, in the “practice” domain—by nature management agencies, farmers, foresters, and corporate business. This process of bridging evident gaps between ecology and economics, and between nature conservation and economic development, has also been felt in the political arena, including in the United Nations and the European Union (which have placed it at the center of their nature conservation and sustainable use strategies). The concept involves the utilitarian framing of those functions of nature that are used by humans and considered beneficial to society as economic and social services. In this light, for example, the disappearance of biodiversity directly affects ecosystem functions that underpin critical services for human well-being. More generally, the concept can be defined in this manner: Ecosystem services are the direct and indirect contributions of ecosystems, in interaction with contributions from human society, to human well-being. The concept underpins four major discussions: (1) Academic: the ecological versus the economic dimensions of the goods and services that flow from ecosystems to the human economy; the challenge of integrating concepts and models across this paradigmatic divide; (2) Social: the risks versus benefits of bringing the utilitarian argument into political debates about nature conservation (Are ecosystem services good or bad for biodiversity and vice versa?); (3) Policy and planning: how to value the benefits from natural capital and ecosystem services (Will this improve decision-making on topics ranging from poverty alleviation via subsidies to farmers to planning of grey with green infrastructure to combining economic growth with nature conservation?); and (4) Practice: Can revenue come from smart management and sustainable use of ecosystems? Are there markets to be discovered and can businesses be created? How do taxes figure in an ecosystem-based economy? The outcomes of these discussions will both help to shape policy and planning of economies at global, national, and regional scales and contribute to the long-term survival and well-being of humanity.

Article

Elisabet Lindgren and Thomas Elmqvist

Ecosystem services refer to benefits for human societies and well-being obtained from ecosystems. Research on health effects of ecosystem services have until recently mostly focused on beneficial effects on physical and mental health from spending time in nature or having access to urban green space. However, nearly all of the different ecosystem services may have impacts on health, either directly or indirectly. Ecosystem services can be divided into provisioning services that provide food and water; regulating services that provide, for example, clean air, moderate extreme events, and regulate the local climate; supporting services that help maintain biodiversity and infectious disease control; and cultural services. With a rapidly growing global population, the demand for food and water will increase. Knowledge about ecosystems will provide opportunities for sustainable agriculture production in both terrestrial and marine environments. Diarrheal diseases and associated childhood deaths are strongly linked to poor water quality, sanitation, and hygiene. Even though improvements are being made, nearly 750 million people still lack access to reliable water sources. Ecosystems such as forests, wetlands, and lakes capture, filter, and store water used for drinking, irrigation, and other human purposes. Wetlands also store and treat solid waste and wastewater, and such ecosystem services could become of increasing use for sustainable development. Ecosystems contribute to local climate regulation and are of importance for climate change mitigation and adaptation. Coastal ecosystems, such as mangrove and coral reefs, act as natural barriers against storm surges and flooding. Flooding is associated with increased risk of deaths, epidemic outbreaks, and negative health impacts from destroyed infrastructure. Vegetation reduces the risk of flooding, also in cities, by increasing permeability and reducing surface runoff following precipitation events. The urban heat island effect will increase city-center temperatures during heatwaves. The elderly, people with chronic cardiovascular and respiratory diseases, and outdoor workers in cities where temperatures soar during heatwaves are in particular vulnerable to heat. Vegetation and especially trees help in different ways to reduce temperatures by shading and evapotranspiration. Air pollution increases the mortality and morbidity risks during heatwaves. Vegetation has been shown also to contribute to improved air quality by, depending on plant species, filtering out gases and airborne particulates. Greenery also has a noise-reducing effect, thereby decreasing noise-related illnesses and annoyances. Biological control uses the knowledge of ecosystems and biodiversity to help control human and animal diseases. Natural surroundings and urban parks and gardens have direct beneficial effects on people’s physical and mental health and well-being. Increased physical activities have well-known health benefits. Spending time in natural environments has also been linked to aesthetic benefits, life enrichments, social cohesion, and spiritual experience. Even living close to or with a view of nature has been shown to reduce stress and increase a sense of well-being.

Article

Giles Jackson

Ecotourism is responsible travel to natural areas that educates and inspires through interpretation—increasingly paired with practical action—that helps conserve the environment and sustain the well-being of local people. Ecotourism is the fastest-growing segment of the travel and tourism industry, and its economic value is projected to exceed USD$100 billion by 2027. Ecotourism emerged in the 1960s as a response to the destructive effects of mass tourism and has been embraced by an increasing number of governments, especially in the developing world, as a vehicle for achieving the UN Sustainable Development Goals. As an emerging, interdisciplinary field of study, ecotourism has reached a critical inflection point, as scholars reflect on the achievements and shortcomings of several decades of research and set out the research agenda for decades to come. The field has yet to achieve consensus on the most basic questions, such as how ecotourism is, or should be, defined; what makes it different from nature-based and related forms of tourism; and what factors ultimately determine the success or failure of ecotourism as a vehicle for sustainable development. This lack of consensus stems in part from the different perspectives and agendas within and between the academic, policy, and industry communities. Because it is based on measured and observed phenomena, empirical research has a critical role to play in advancing the theory and practice of ecotourism. However, scholars also recognize that to fulfill this role, methodologies must evolve to become more longitudinal, scalable, inclusive, integrative, and actionable.

Article

Geologists’ reframing of the global changes arising from human impacts can be used to consider how the insights from environmental economics inform policy under this new perspective. They ask a rhetorical question. How would a future generation looking back at the records in the sediments and ice cores from today’s activities judge mankind’s impact? They conclude that the globe has entered a new epoch, the Anthropocene. Now mankind is the driving force altering the Earth’s natural systems. This conclusion, linking a physical record to a temporal one, represents an assessment of the extent of current human impact on global systems in a way that provides a warning that all policy design and evaluation must acknowledge that the impacts of human activity are taking place on a planetary scale. As a result, it is argued that national and international environmental policies need to be reconsidered. Environmental economics considers the interaction between people and natural systems. So it comes squarely into conflict with conventional practices in both economics and ecology. Each discipline marginalizes the role of the other in the outcomes it describes. Market and natural systems are not separate. This conclusion is important to the evaluation of how (a) economic analysis avoided recognition of natural systems, (b) the separation of these systems affects past assessments of natural resource adequacy, and (c) policy needs to be redesigned in ways that help direct technological innovation that is responsive to the importance of nonmarket environmental services to the global economy and to sustaining the Earth’s living systems.

Article

Enrico Cesaretti, Roberta Biasillo, and Damiano Benvegnú

Does something like “Italian environmental humanities” exist? If so, what makes an Italian approach to this multifaceted field of inquiry so different from the more consolidated Anglo-American tradition? At least until the early 21st century, Italian academic institutions have maintained established disciplinary boundaries and have continued to produce siloed forms of knowledge. New and more flexible forms of scholarly collaboration have also not been traditionally supported at the national level, as political decisions regarding curricular updates and funding opportunities have been unable to foster interdisciplinarity and innovative approaches to knowledge production. However, an underlying current of environmental awareness and action has a strong and long-standing presence in Italy. After all, Italy is where St. Francis wrote The Canticle of Creatures, with its non-hierarchical vision of the world, which then inspired the papal encyclical Laudato si (2015). Italy is also where Ambrogio Lorenzetti’s fresco The Allegory and the Effects of Good Government in the City and in the Country (1337–1339) already “pre-ecologically” reflected on the relationship between nature and culture, on the effect of political decisions on our surroundings, and on the impact of local environments on the well-being (as well as the malaise) of their inhabitants. Additionally, Italy is among the few countries in the world whose constitution lists specific laws aimed at protecting its landscapes, biodiversity, and ecosystems in addition to its cultural heritage, as stated in a recent addendum to articles 9 and 41. However, Italy also experienced an abrupt, violent process of development, modernization, and industrialization that radically transformed its urban, rural, and coastal territories after World War II. Many of its landscapes, once iconic and picturesque, have become polluted, toxic, or the outcome of contested, violent histories. And the effects of globalization are materially affecting its ecologies, meaning that Italy is also exposed to constant risks (earthquakes, floods, landslides, volcanic eruptions) and presents geo-morphological features that situate it at the very center of planetary climate change (both atmospheric and sociopolitical) and migration patterns. Considering this, thinking about Italy from an environmental humanities (EH) perspective and, in turn, about the EH in the context of Italy, highlights the interconnections between the local and the global and, in the process, enriches the EH debate.

Article

Kimberly M. Carlson and Rachael D. Garrett

Oil crops play a critical role in global food and energy systems. Since these crops have high oil content, they provide cooking oils for human consumption, biofuels for energy, feed for animals, and ingredients in beauty products and industrial processes. In 2014, oil crops occupied about 20% of crop harvested area worldwide. While small-scale oil crop production for subsistence or local consumption continues in certain regions, global demand for these versatile crops has led to substantial expansion of oil crop agriculture destined for export or urban markets. This expansion and subsequent cultivation has diverse effects on the environment, including loss of forests, savannas, and grasslands, greenhouse gas emissions, regional climate change, biodiversity decline, fire, and altered water quality and hydrology. Oil palm in Southeast Asia and soybean in South America have been identified as major proximate causes of tropical deforestation and environmental degradation. Stringent conservation policies and yield increases are thought to be critical to reducing rates of soybean and oil palm expansion into natural ecosystems. However, the higher profits that often accompany greater yields may encourage further expansion, while policies that restrict oil crop expansion in one region may generate secondary “spillover” effects on other crops and regions. Due to these complex feedbacks, ensuring a sustainable supply of oil crop products to meet global demand remains a major challenge for agricultural companies, farmers, governments, and civil society.

Article

Increased water variability is one of the most pressing challenges presented by global climate change. A warmer atmosphere will hold more water and will result in more frequent and more intense El Niño events. Domestic and international water rights regimes must adapt to the more extreme drought and flood cycles resulting from these phenomena. Laws that allocate rights to water, both at the domestic level between water users and at the international level between nations sharing transboundary water sources, are frequently rigid governance systems ill-suited to adapt to a changing climate. Often, water laws allocate a fixed quantity of water for a certain type of use. At the domestic level, such rights may be considered legally protected private property rights or guaranteed human rights. At the international level, such water allocation regimes may also be dictated by human rights, as well as concerns for national sovereignty. These legal considerations may ossify water governance and inhibit water managers’ abilities to alter water allocations in response to changing water supplies. To respond to water variability arising from climate change, such laws must be reformed or reinterpreted to enhance their adaptive capacity. Such adaptation should consider both intra-generational equity and inter-generational equity. One potential approach to reinterpreting such water rights regimes is a stronger emphasis on the public trust doctrine. In many nations, water is a public trust resource, owned by the state and held in trust for the benefit of all citizens. Rights to water under this doctrine are merely usufructuary—a right to make a limited use of a specified quantity of water subject to governmental approval. The recognition and enforcement of the fiduciary obligation of water governance institutions to equitably manage the resource, and characterization of water rights as usufructuary, could introduce needed adaptive capacity into domestic water allocation laws. The public trust doctrine has been influential even at the international level, and that influence could be enhanced by recognizing a comparable fiduciary obligation for inter-jurisdictional institutions governing international transboundary waters. Legal reforms to facilitate water markets may also introduce greater adaptive capacity into otherwise rigid water allocation regimes. Water markets are frequently inefficient for several reasons, including lack of clarity in water rights, externalities inherent in a resource that ignores political boundaries, high transaction costs arising from differing economic and cultural valuations of water, and limited competition when water utilities are frequently natural monopolies. Legal reforms that clarify property rights in water, specify the minimum quantity, quality, and affordability of water to meet basic human needs and environmental flows, and mandate participatory and transparent water pricing and contracting could allow greater flexibility in water allocations through more efficient and equitable water markets.

Article

Lydia Kallipoliti

The term ecological design was coined in a 1996 book by Sim van der Ryn and Stewart Cowan, in which the authors argued for a seamless integration of human activities with natural processes to minimize destructive environmental impact. Following their cautionary statements, William McDonough and Michael Braungart published in 2002 their manifesto book From Cradle to Cradle, which proposed a circular political economy to replace the linear logic of “cradle to grave.” These books have been foundational in architecture and design discussions on sustainability and establishing the technical dimension, as well as the logic, of efficiency, optimization, and evolutionary competition in environmental debates. From Cradle to Cradle evolved into a production model implemented by a number of companies, organizations, and governments around the world, and it also has become a registered trademark and a product certification. Popularized recently, these developments imply a very short history for the growing field of ecological design. However, their accounts hark as far back as Ernst Haeckel’s definition of the field of ecology in 1866 as an integral link between living organisms and their surroundings (Generelle Morphologie der Organismen, 1866); and Henry David Thoreau’s famous 1854 manual for self-reliance and living in proximity with natural surroundings, in the cabin that he built at Walden Pond, Massachusetts (Walden; or, Life in the Woods, 1854). Since World War II, contrary to the position of ecological design as a call to fit harmoniously within the natural world, there has been a growing interest in a form of synthetic naturalism, (Closed Worlds; The Rise and Fall of Dirty Physiology, 2015), where the laws of nature and metabolism are displaced from the domain of wilderness to the domain of cities, buildings, and objects. With the rising awareness of what John McHale called disturbances in the planetary reservoir (The Future of the Future, 1969), the field of ecological design has signified not only the integration of the designed object or space in the natural world, but also the reproduction of the natural world in design principles and tools through technological mediation. This idea of architecture and design producing nature paralleled what Buckminster Fuller, John McHale, and Ian McHarg, among others, referred to as world planning; that is, to understand ecological design as the design of the planet itself as much as the design of an object, building, or territory. Unlike van der Ryn and Cowan’s argumentation, which focused on a deep appreciation for nature’s equilibrium, ecological design might commence with the synthetic replication of natural systems. These conflicting positions reflect only a small fraction of the ubiquitous terms used to describe the field of ecological design, including green, sustain, alternative, resilient, self-sufficient, organic, and biotechnical. In the context of this study, this paper will argue that ecological design starts with the reconceptualization of the world as a complex system of flows rather than a discrete compilation of objects, which visual artist and theorist György Kepes has described as one of the fundamental reorientations of the 20th century (Art and Ecological Consciousness, 1972).

Article

Globally, around 1.5 billion people in developing countries, or approximately 35% of the rural population, can be found on less-favored agricultural land (LFAL), which is susceptible to low productivity and degradation because the agricultural potential is constrained biophysically by terrain, poor soil quality, or limited rainfall. Around 323 million people in such areas also live in locations that are highly remote, and thus have limited access to infrastructure and markets. The households in such locations often face a vicious cycle of declining livelihoods, increased ecological degradation and loss of resource commons, and declining ecosystem services on which they depend. In short, these poor households are prone to a poverty-environment trap. Policies to eradicate poverty, therefore, need to be targeted to improve the economic livelihood, productivity, and income of the households located on remote LFAL. The specific elements of such a strategy include involving the poor in paying for ecosystem service schemes and other measures that enhance the environments on which the poor depend; targeting investments directly to improving the livelihoods of the rural poor, thus reducing their dependence on exploiting environmental resources; and tackling the lack of access by the rural poor in less-favored areas to well-functioning and affordable markets for credit, insurance, and land, as well as the high transportation and transaction costs that prohibit the poorest households in remote areas to engage in off-farm employment and limit smallholder participation in national and global markets.

Article

Nations rapidly industrialized after World War II, sharply increasing the extraction of resources from the natural world. Colonial empires broke up on land after the war, but they were re-created in the oceans. The United States, Japan, and the Soviet Union, as well as the British, Germans, and Spanish, industrialized their fisheries, replacing fleets of small-scale, independent artisanal fishermen with fewer but much larger government-subsidized ships. Nations like South Korea and China, as well as the Eastern Bloc countries of Poland and Bulgaria, also began fishing on an almost unimaginable scale. Countries raced to find new stocks of fish to exploit. As the Cold War deepened, nations sought to negotiate fishery agreements with Third World nations. The conflict over territorial claims led to the development of the Law of the Sea process, starting in 1958, and to the adoption of 200-mile exclusive economic zones (EEZ) in the 1970s. Fishing expanded with the understanding that fish stocks were robust and could withstand high harvest rates. The adoption of maximum sustained yield (MSY) after 1954 as the goal of postwar fishery negotiations assumed that fish had surplus and that scientists could determine how many fish could safely be caught. As fish stocks faltered under the onslaught of industrial fisheries, scientists re-assessed their assumptions about how many fish could be caught, but MSY, although modified, continues to be at the heart of modern fisheries management.

Article

Vincent Moreau and Guillaume Massard

The concept of metabolism takes root in biology and ecology as a systematic way to account for material flows in organisms and ecosystems. Early applications of the concept attempted to quantify the amount of water and food the human body processes to live and sustain itself. Similarly, ecologists have long studied the metabolism of critical substances and nutrients in ecological succession towards climax. With industrialization, the material and energy requirements of modern economic activities have grown exponentially, together with emissions to the air, water and soil. From an analogy with ecosystems, the concept of metabolism grew into an analytical methodology for economic systems. Research in the field of material flow analysis has developed approaches to modeling economic systems by assessing the stocks and flows of substances and materials for systems defined in space and time. Material flow analysis encompasses different methods: industrial and urban metabolism, input–output analysis, economy-wide material flow accounting, socioeconomic metabolism, and more recently material flow cost accounting. Each method has specific scales, reference substances such as metals, and indicators such as concentration. A material flow analysis study usually consists of a total of four consecutive steps: (a) system definition, (b) data acquisition, (c) calculation, and (d) interpretation. The law of conservation of mass underlies every application, which implies that all material flows, as well as stocks, must be accounted for. In the early 21st century, material depletion, accumulation, and recycling are well-established cases of material flow analysis. Diagnostics and forecasts, as well as historical or backcast analyses, are ideally performed in a material flow analysis, to identify shifts in material consumption for product life cycles or physical accounting and to evaluate the material and energy performance of specific systems. In practice, material flow analysis supports policy and decision making in urban planning, energy planning, economic and environmental performance, development of industrial symbiosis and eco industrial parks, closing material loops and circular economy, pollution remediation/control and material and energy supply security. Although material flow analysis assesses the amount and fate of materials and energy rather than their environmental or human health impacts, a tacit assumption states that reduced material throughputs limit such impacts.