1-2 of 2 Results  for:

  • Keywords: evapotranspiration x
  • Framing Concepts in Environmental Science x
Clear all


Garrison Sposito

Precipitation falling onto the land surface in terrestrial ecosystems is transformed into either “green water” or “blue water.” Green water is the portion stored in soil and potentially available for uptake by plants, whereas blue water either runs off into streams and rivers or percolates below the rooting zone into a groundwater aquifer. The principal flow of green water is by evapotranspiration from soil into the atmosphere, whereas blue water moves through the channel system at the land surface or through the pore space of an aquifer. Globally, the flow of green water accounts for about two-thirds of the global flow of all water, green or blue; thus the global flow of green water, most of which is by transpiration, dominates that of blue water. In fact, the global flow of green water by transpiration equals the flow of all the rivers on Earth into the oceans. At the global scale, evapotranspiration is measured using a combination of ground-, satellite-, and model-based methods implemented over annual or monthly time-periods. Data are examined for self-consistency and compliance with water- and energy-balance constraints. At the catchment scale, average annual evapotranspiration data also must conform to water and energy balance. Application of these two constraints, plus the assumption that evapotranspiration is a homogeneous function of average annual precipitation and the average annual net radiative heat flux from the atmosphere to the land surface, leads to the Budyko model of catchment evapotranspiration. The functional form of this model strongly influences the interrelationship among climate, soil, and vegetation as represented in parametric catchment modeling, a very active area of current research in ecohydrology. Green water flow leading to transpiration is a complex process, firstly because of the small spatial scale involved, which requires indirect visualization techniques, and secondly because the near-root soil environment, the rhizosphere, is habitat for the soil microbiome, an extraordinarily diverse collection of microbial organisms that influence water uptake through their symbiotic relationship with plant roots. In particular, microbial polysaccharides endow rhizosphere soil with properties that enhance water uptake by plants under drying stress. These properties differ substantially from those of non-rhizosphere soil and are difficult to quantify in soil water flow models. Nonetheless, current modeling efforts based on the Richards equation for water flow in an unsaturated soil can successfully capture the essential features of green water flow in the rhizosphere, as observed using visualization techniques. There is also the yet-unsolved problem of upscaling rhizosphere properties from the small scale typically observed using visualization techniques to that of the rooting zone, where the Richards equation applies; then upscaling from the rooting zone to the catchment scale, where the Budyko model, based only on water- and energy-balance laws, applies, but still lacks a clear connection to current soil evaporation models; and finally, upscaling from the catchment to the global scale. This transitioning across a very broad range of spatial scales, millimeters to kilometers, remains as one of the outstanding grand challenges in green water ecohydrology.


The global water cycle concept has its roots in the ancient understanding of nature. Indeed, the Greeks and Hebrews documented some of the most some important hydrological processes. Furthermore, Africa, Sri Lanka, and China all have archaeological evidence to show the sophisticated nature of water management that took place thousands of years ago. During the 20th century, a broader perspective was taken and the hydrological cycle was used to describe the terrestrial and freshwater component of the global water cycle. Data analysis systems and modeling protocols were developed to provide the information needed to efficiently manage water resources. These advances were helpful in defining the water in the soil and the movement of water between stores of water over land surfaces. Atmospheric inputs to these balances were also monitored, but the measurements were much more reliable over countries with dense networks of precipitation gauges and radiosonde observations. By the 1960s, early satellites began to provide images that gave a new perception of Earth processes, including a more complete realization that water cycle components and processes were continuous in space and could not be fully understood through analyses partitioned by geopolitical or topographical boundaries. In the 1970s, satellites delivered quantitative radiometric measurements that allowed for the estimation of a number of variables such as precipitation and soil moisture. In the United States, by the late 1970s, plans were made to launch the Earth System Science program, led by the National Aeronautics and Space Agency (NASA). The water component of this program integrated terrestrial and atmospheric components and provided linkages with the oceanic component so that a truly global perspective of the water cycle could be developed. At the same time, the role of regional and local hydrological processes within the integrated “global water cycle” began to be understood. Benefits of this approach were immediate. The connections between the water and energy cycles gave rise to the Global Energy and Water Cycle Experiment (GEWEX)1 as part of the World Climate Research Programme (WCRP). This integrated approach has improved our understanding of the coupled global water/energy system, leading to improved prediction models and more accurate assessments of climate variability and change. The global water cycle has also provided incentives and a framework for further improvements in the measurement of variables such as soil moisture, evapotranspiration, and precipitation. In the past two decades, groundwater has been added to the suite of water cycle variables that can be measured from space. New studies are testing innovative space-based technologies for high-resolution surface water level measurements. While many benefits have followed from the application of the global water cycle concept, its potential is still being developed. Increasingly, the global water cycle is assisting in understanding broad linkages with other global biogeochemical cycles, such as the nitrogen and carbon cycles. Applications of this concept to emerging program priorities, including the Sustainable Development Goals (SDGs) and the Water-Energy-Food (W-E-F) Nexus, are also yielding societal benefits.