1-20 of 39 Results

  • Keywords: ecosystem x
Clear all

Article

Achilleas Vassilopoulos and Phoebe Koundouri

Water accounts for more than 70% of Earth’s surface, making marine ecosystems the largest and most important ecosystems of the planet. However, the fact that a large part of these ecosystems and their potential contribution to humans remains unexplored has rendered them unattractive for valuation exercises. On the contrary, coastal zones, , being the interface between the land, the sea, and human activities competing for space and resources, have been extensively studied with the objective of marine ecosystem services valuation. Examples of marine and coastal ecosystems are open oceans, coral reefs, deep seas, hydrothermal vents, abyssal plains, wetlands, rocky and sandy shores, mangroves, kelp forests, estuaries, salt marshes, and mudflats. Although there are arguments that no classification can capture the ways in which ecosystems contribute to human well-being and support human life, very often policymakers have to decide upon alternative uses of such natural environments. Should a given wetland be preserved or converted to agricultural land? Should a mangrove be designated within the protected areas system or be used for shrimp farming? To answer these questions, one needs first to establish the philosophical basis of value within the ecosystems framework. To this end, two vastly different approaches have been proposed. On the one hand, the nonutilitarian (biocentric) approach relies on the notion of intrinsic value attached to the mere existence of a natural resource, independent of whether humans derive utility from its use (if any) or preservation. Albeit useful in philosophical terms, this approach is still far from providing unambiguous and generally accepted inputs to the tangible problem of ecosystem valuation. The utilitarian (anthropocentric) perspective, on the other hand, assumes that natural environments have value to the extent that humans derive utility from placing such value. According to the total economic value (TEV) approach, this value can be divided into “use” and “nonuse.” Use values involve some interaction with the resource, either directly or indirectly, while nonuse values are derived simply from the knowledge that natural resources and aspects of the natural environment are maintained. Existence and altruistic values fall within this latter category. Not surprisingly, economists have long revealed a strong preference for the utilitarian approach. As a result, the valuation of marine ecosystems requires that we understand the ecosystem services they deliver and then attach a value to the services. But what tools are available to economists when valuing marine ecosystems? For the most part, ecosystem services are not traded in formal markets and thus actual prices are usually not available. Valuation techniques essentially seek different ways to estimate measures like Willingness To Pay (WTP), Willingness To Accept (WTA), or expenditures and costs. The techniques used for the valuation of ecosystem services can be divided into three main families: market-based, revealed preference, and stated preference. Finally, value-transfer methods are also used when estimates of value are available in similar contexts. All these methods have advantages and disadvantages, with different methods being suitable for different situations. Hence, extra caution is required during the design and implementation of valuation attempts.

Article

Jean-Louis Weber

Environmental accounting is an attempt to broaden the scope of the accounting frameworks used to assess economic performance, to take stock of elements that are not recorded in public or private accounting books. These gaps occur because the various costs of using nature are not captured, being considered, in many cases, as externalities that can be forwarded to others or postponed. Positive externalities—the natural resource—are depleted with no recording in National Accounts (while companies do record them as depreciation elements). Depletion of renewable resource results in degradation of the environment, which adds to negative externalities resulting from pollution and fragmentation of cyclic and living systems. Degradation, or its financial counterpart in depreciation, is not recorded at all. Therefore, the indicators of production, income, consumption, saving, investment, and debts on which many economic decisions are taken are flawed, or at least incomplete and sometimes misleading, when immediate benefits are in fact losses in the long run, when we consume the reproductive functions of our capital. Although national accounting has been an important driving force in change, environmental accounting encompasses all accounting frameworks including national accounts, financial accounting standards, and accounts established to assess the costs and benefits of plans and projects. There are several approaches to economic environmental accounting at the national level. Of these approaches, one purpose is the calculation of genuine economic welfare by taking into account losses from environmental damage caused by economic activity and gains from unrecorded services provided by Nature. Here, particular attention is given to the calculation of a “Green GDP” or “Adjusted National Income” and/or “Genuine Savings” as well as natural assets value and depletion. A different view considers the damages caused to renewable natural capital and the resulting maintenance and restoration costs. Besides approaches based on benefits and costs, more descriptive accounts in physical units are produced with the purpose of assessing resource use efficiency. With regard to natural assets, the focus can be on assets directly used by the economy, or more broadly, on ecosystem capacity to deliver services, ecosystem resilience, and its possible degradation. These different approaches are not necessarily contradictory, although controversies can be noted in the literature. The discussion focuses on issues such as the legitimacy of combining values obtained with shadow prices (needed to value the elements that are not priced by the market) with the transaction values recorded in the national accounts, the relative importance of accounts in monetary vs. physical units, and ultimately, the goals for environmental accounting. These goals include assessing the sustainability of the economy in terms of conservation (or increase) of the net income flow and total economic wealth (the weak sustainability paradigm), in relation to the sustainability of the ecosystem, which supports livelihoods and well-being in the broader sense (strong sustainability). In 2012, the UN Statistical Commission adopted an international statistical standard called, the “System of Environmental-Economic Accounting Central Framework” (SEEA CF). The SEEA CF covers only items for which enough experience exists to be proposed for implementation by national statistical offices. A second volume on SEEA-Experimental Ecosystem Accounting (SEEA-EEA) was added in 2013 to supplement the SEEA CF with a research agenda and the development of tests. Experiments of the SEEA-EEA are developing at the initiative of the World Bank (WAVES), UN Environment Programme (VANTAGE, ProEcoServ), or the UN Convention on Biological Diversity (CBD) (SEEA-Ecosystem Natural Capital Accounts-Quick Start Package [ENCA-QSP]). Beside the SEEA and in relation to it, other environmental accounting frameworks have been developed for specific purposes, including material flow accounting (MFA), which is now a regular framework at the Organisation for Economic Co-operation and Development (OECD) to report on the Green Growth strategy, the Intergovernmental Panel on Climate Change (IPCC) guidelines for the the UN Framework Convention on Climate Change (UNFCCC), reporting greenhouse gas emissions and carbon sequestration. Can be considered as well the Ecological Footprint accounts, which aim at raising awareness that our resource use is above what the planet can deliver, or the Millennium Ecosystem Assessment of 2005, which presents tables and an overall assessment in an accounting style. Environmental accounting is also a subject of interest for business, both as a way to assess impacts—costs and benefits of projects—and to define new accounting standards to assess their long term performance and risks.

Article

Leon C. Braat

The concept of ecosystem services considers the usefulness of nature for human society. The economic importance of nature was described and analyzed in the 18th century, but the term ecosystem services was introduced only in 1981. Since then it has spurred an increasing number of academic publications, international research projects, and policy studies. Now a subject of intense debate in the global scientific community, from the natural to social science domains, it is also used, developed, and customized in policy arenas and considered, if in a still somewhat skeptical and apprehensive way, in the “practice” domain—by nature management agencies, farmers, foresters, and corporate business. This process of bridging evident gaps between ecology and economics, and between nature conservation and economic development, has also been felt in the political arena, including in the United Nations and the European Union (which have placed it at the center of their nature conservation and sustainable use strategies). The concept involves the utilitarian framing of those functions of nature that are used by humans and considered beneficial to society as economic and social services. In this light, for example, the disappearance of biodiversity directly affects ecosystem functions that underpin critical services for human well-being. More generally, the concept can be defined in this manner: Ecosystem services are the direct and indirect contributions of ecosystems, in interaction with contributions from human society, to human well-being. The concept underpins four major discussions: (1) Academic: the ecological versus the economic dimensions of the goods and services that flow from ecosystems to the human economy; the challenge of integrating concepts and models across this paradigmatic divide; (2) Social: the risks versus benefits of bringing the utilitarian argument into political debates about nature conservation (Are ecosystem services good or bad for biodiversity and vice versa?); (3) Policy and planning: how to value the benefits from natural capital and ecosystem services (Will this improve decision-making on topics ranging from poverty alleviation via subsidies to farmers to planning of grey with green infrastructure to combining economic growth with nature conservation?); and (4) Practice: Can revenue come from smart management and sustainable use of ecosystems? Are there markets to be discovered and can businesses be created? How do taxes figure in an ecosystem-based economy? The outcomes of these discussions will both help to shape policy and planning of economies at global, national, and regional scales and contribute to the long-term survival and well-being of humanity.

Article

This is an immersive journey through different water management concepts. The conceptual attractiveness of concepts is not enough; they must be applicable in the real and fast-changing world. Thus, beyond the concepts, our long-standing challenge remains increasing water security. This is about stewardship of water resources for the greatest good of societies and the environment. It is a public responsibility requiring dynamic, adaptable, participatory, and balanced planning. It is all about coordination and sharing. Multi-sectoral approaches are needed to adequately address the threats and opportunities relating to water resources management in the context of climate change, rapid urbanization, and growing disparities. The processes involved are many and need consistency and long-term commitment to succeed. Climate change is closely related to the problems of water security, food security, energy security and environment sustainability. These interconnections are often ignored when policy-makers devise partial responses to individual problems. They call for broader public policy planning tools with the capacity to encourage legitimate public/collective clarification of the trade-offs and the assessment of the potential of multiple uses of water to facilitate development and growth. We need to avoid mental silos and to overcome the current piecemeal approach to solving the water problems. This requires a major shift in practice for organizations (governmental as well as donor organizations) accustomed to segregating water problems by subsectors. Our experience with integration tells us that (1) we need to invest in understanding the political economy of different sectors; (2) we need new institutional arrangements that function within increasing complexity, cutting across sectoral silos and sovereign boundaries; (3) top down approaches for resources management will not succeed without bottom-up efforts to help people improve their livelihoods and their capacity to adapt to increasing resource scarcity as well as to reduce unsustainable modes of production. Political will, as well as political skill, need visionary and strong leadership to bring opposing interests into balance to inform policy- making with scientific understanding, and to negotiate decisions that are socially accepted. Managing water effectively across a vast set of concerns requires equally vast coordination. Strong partnerships and knowledge creation and sharing are essential. Human civilization – we know- is a response to challenge. Certainly, water scarcity can be a source of conflict among competing users, particularly when combined with other factors of political or cultural tension. But it can also be an inducement to cooperation even in high tension areas. We believe that human civilization can find itself the resources to respond successfully to the many water challenges, and in the process make water a learning ground for building the expanded sense of community and sharing necessary to an increasingly interconnected world.

Article

Edward B. Barbier

Since the 2004 Indian Ocean tsunami, there has been strong interest globally in restoring mangrove ecosystems and their potential benefits from protecting coastlines and people from damaging storms. However, the net economic gains from mangrove restoration have been variable; there have been some notable project successes but also some prominent failures. There is also an ongoing debate over whether or not the cost of mangrove restoration is justified by the benefits these ecosystems provide. Although the high costs of mangrove restoration and the risk of failure have led to criticism of such schemes, perhaps the more pertinent concern should be whether the ex post option of restoration is economically beneficial compared to preventing irreversible mangrove conversion to alternative land uses. Case studies on mangrove valuation from Brazil and Thailand illustrate the key issues underlying this concern. Since much recent mangrove restoration has been motivated by the trees’ potential storm-protection benefit, a number of studies have valued mangroves for this purpose. However, mangroves are also valued for other important benefits, such as providing collected products for local coastal communities and serving as nursery and breeding grounds for off-shore fisheries. The implications of these benefits for mangrove restoration can be significant. It is also important to understand the appropriate use of benefit transfer when it is difficult to value restored mangroves, methods to incorporate the potential risk of mangrove restoration failure, and assessment of cost-effective mangrove restoration.

Article

Payments for ecosystem or environmental services (PES) are broadly defined as payments (in kind or in cash) to participants (often landowners) who volunteer to provide the services either to a specific user or to society at large. Payments are typically conditional on agreed rules of natural resource management rather than on delivery of the services. The rules range from protection of native ecosystems to installation of conservation practices. The earliest proponents of PES were economists who argued that they are a cost-effective way to conserve forests, manage watersheds, and protect biodiversity. Political support for PES rests on the claim that these programs can alleviate poverty among participants as well as protect the environment. More recent literature and experience with PES reveals barriers to achieving cost-effectiveness and poverty alleviation, including many related to the distribution of participation. The Costa Rican experience illustrates the choices that must be made and the potential for innovation in the design of PES programs.

Article

Bartosz Bartkowski and Nele Lienhoop

While economic values of nonmarket ecosystem goods and services are in high demand to inform decision-making processes, economic valuation has also attracted significant criticism. Particularly, its implicit rationality assumptions and value monism gave rise to alternative approaches to economic nonmarket valuation. Deliberative monetary valuation (DMV) originated in the early 2000s and gained particular prominence after 2010, especially in the context of the United Kingdom National Ecosystem Assessment (UK NEA). It constitutes a major methodological development to overcome the limitations of conventional nonmarket valuation methods by incorporating deliberative group elements (information provision, discussion, time to reflect in a group setting) in the valuation process. DMV approaches range from those that focus on facilitating individual preference formation for complex and unfamiliar environmental changes and stay close to neoclassical economic theory to those that try to go beyond methodological individualism and monetary valuation to include a plurality of different values. The theoretical foundation of DMV comprises a mix of economic welfare theory, on the one hand, and various strands of deliberative democratic theory and discourse ethics, on the other. DMV formats are mostly inspired by deliberative institutions such as citizens’ juries and combine those with stated preference methods such as choice experiments. While the diversity of approaches within this field is large, it has been demonstrated that deliberation can lead to more well-informed and stable preferences as well as facilitate the inclusion of considerations going beyond self-interest. Future research challenges surrounding DMV include the exploration of intergroup power relations and group dynamics as well as the theoretical status and the validity of DMV results.

Article

Different ecosystem values of the Amazon rainforest are surveyed in economic terms. Spatial rainforest valuation is crucial for good forest management, such as where to put the most effort to stop illegal logging and forest fires, and which areas to designate as new nationally protected areas. Three classes of economic value are identified, according to who does the valuation: values accruing to the local and regional populations (of South America); carbon values (which are global); and other global (noncarbon) values. Only the first two classes are discussed. Three types of value are separated according to ecosystem service delivered from the rainforest: provisioning services; supporting and regulating services; and cultural and other human services. Net values of provisioning services, including reduced impact logging and various non-timber forest products, are well documented for the entire Brazilian Amazon at a spatially detailed scale and amount to at least $20–50/ha/year. Less-detailed information exists about values of fish, game, and bioprospecting from the Amazon, although their total values can be shown to be sizable. Many supporting and regulating services are harder to value economically, in particular climate regulation and watershed and erosion protection. Impacts of changed rainfall when Amazon rainforest is lost have been valued at detailed scale, but with relative model values of $10–20/ha/year. Carbon values are much larger, at a carbon price of $30/ton CO2, around $14,000/ha as capitalized value. The average per-hectare value of tourism and the health benefits from having the Amazon forest are low, and such values cannot easily be pinned down to individual areas of the Amazon. Finally, the biodiversity values of the Amazon, as accruing to the local and regional population, seem to be small based on recent stated-preference work in Brazil. Most of the values related to biodiversity are likely to be global and may. in principle, be very large, but the global components are not valued here. The concept of value is discussed, and a marginal valuation concept (practically useful for policy) is favored as opposed to an average or total valuation. Marginal value can be below average value (as is likely for biodiversity and tourism), but can also in some contexts be higher. This can occur where losing forest at a local scale increases the prevalence of forest fires and where it increases forest dryness, leading to a multiplier process whereby more forest is lost. While strides have recently been made to improve rainforest valuation at both micro- and macroscales, much work still remains.

Article

Stephan Pauleit, Rieke Hansen, Emily Lorance Rall, Teresa Zölch, Erik Andersson, Ana Catarina Luz, Luca Szaraz, Ivan Tosics, and Kati Vierikko

Urban green infrastructure (GI) has been promoted as an approach to respond to major urban environmental and social challenges such as reducing the ecological footprint, improving human health and well-being, and adapting to climate change. Various definitions of GI have been proposed since its emergence more than two decades ago. This article aims to provide an overview of the concept of GI as a strategic planning approach that is based on certain principles. A variety of green space types exist in urban areas, including remnants of natural areas, farmland on the fringe, designed green spaces, and derelict land where successional vegetation has established itself. These green spaces, and especially components such as trees, can cover significant proportions of urban areas. However, their uneven distribution raises issues of social and environmental justice. Moreover, the diverse range of public, institutional, and private landowners of urban green spaces poses particular challenges to GI planning. Urban GI planning must consider processes of urban change, especially pressures on green spaces from urban sprawl and infill development, while derelict land may offer opportunities for creating new, biodiverse green spaces within densely built areas. Based on ample evidence from the research literature, it is suggested that urban GI planning can make a major contribution to conserving and enhancing biodiversity, improving environmental quality and reducing the ecological footprint, adapting cities to climate change, and promoting social cohesion. In addition, GI planning may support the shift toward a green economy. The benefits derived from urban green spaces via the provision of ecosystem services are key to meeting these challenges. The text argues that urban GI planning should build on seven principles to unlock its full potential. Four of these are treated in more detail: green-gray integration, multifunctionality, connectivity, and socially inclusive planning. Considering these principles in concert is what makes GI planning a distinct planning approach. Results from a major European research project indicate that the principles of urban GI planning have been applied to different degrees. In particular, green-gray integration and approaches to socially inclusive planning offer scope for further improvement In conclusion, urban GI is considered to hold much potential for the transition toward more sustainable and resilient pathways of urban development. While the approach has developed in the context of the Western world, its application to the rapidly developing cities of the Global South should be a priority.

Article

Humans have been exposed to naturally occurring toxic chemicals and materials over the course of their existence as a species. These materials include various metals, the metalloid arsenic, and atmospheric combustion particulates, as well as bacterial, fungal, algal, and plant toxins. They have also consumed plants that contain a host of phytochemicals, many of which are believed to be beneficial, such as plant polyphenols. People are exposed to these various substances from a number of sources. The pathways of exposure include air, water, groundwater, soil (including via plants grown in toxic soils), and various foods, such as vegetables, fruit, fungi, seafood and fish, eggs, wild birds, marine mammals, and farmed animals. An overview of the various health benefits, hazards and risks relating to the risks reveals the very wide variety of chemicals and materials that are present in the natural environment and can interact with human biology, to both its betterment and detriment. The major naturally occurring toxic materials that impact human health include metals, metalloids (e.g., arsenic), and airborne particulates. The Industrial Revolution is a major event that increased ecosystem degradation and the various types and duration of exposure to toxic materials. The explosions in new organic and organometallic products that were and still are produced over the past two centuries have introduced new toxicities and associated pathologies. The prevalence in the environment of harmful particulates from motor-vehicle exhaust emissions, road dust and tire dust, and other combustion processes must also be considered in the broader context of air pollution. Natural products, such as bacterial, fungal, algal, and plant toxins, can also have adverse effects on health. At the same time, plant-derived phytochemicals (i.e., polyphenols, terpenoids, urolithins, and phenolic acids, etc.) also have beneficial and potential beneficial effects, particularly with regard to their anti-inflammatory effects. Because inflammation is associated with most disease processes, phytochemicals that have antioxidant and anti-inflammatory properties are of great interest as potential nutraceuticals. These potentially beneficial compounds may help to combat various cancers; autoimmune conditions; neurodegenerative diseases, including dementias; and psychotic conditions, such as depression, and are also essential micronutrients that promote health and well-being. The cellular and molecular mechanisms in humans that phytochemicals modulate, or otherwise interact with, to improve human health are now known. In the early 21st century, some of the current pollution issues are legacy problems from past industrialization, such as mercury and persistent organic pollutants (POPs). These POPs include many organochlorine compounds (e.g., polychlorinated biphenyls, pesticides, polychlorinated and polybrominated dibenzo-dioxans and -furans), as well as polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs, and others. The toxicity of chemical mixtures is still a largely unknown problem, particularly with regard to possible synergies. The continuing development of new organic chemicals and nanomaterials is an important environmental health issue; and the need for vigilance with respect to their possible health hazards is urgent. Nanomaterials, in particular, pose potential novel problems in the context of their chemical properties; humans have not previously been exposed to these types of materials, which may well be able to exploit gaps in our existing cellular protection mechanisms. Hopefully, future advances in knowledge emerging from combinatorial chemistry, molecular modeling, and predictive quantitative structure-activity relationships (QSARs), will enable improved identification of the potential toxic properties of novel industrial organic chemicals, pharmaceuticals, and nanomaterials before they are released into the natural environment, and thus prevent a repetition of past disastrous events.

Article

Deforestation in Brazilian Amazonia destroys environmental services that are important for the whole world, and especially for Brazil itself. These services include maintaining biodiversity, avoiding global warming, and recycling water that provides rainfall to Amazonia, to other parts of Brazil, such as São Paulo, and to neighboring countries, such as Argentina. The forest also maintains the human populations and cultures that depend on it. Deforestation rates have gone up and down over the years with major economic cycles. A peak of 27,772 km2/year was reached in 2004, followed by a major decline to 4571 km2/year in 2012, after which the rate trended upward, reaching 7989 km2/year in 2016 (equivalent to about 1.5 hectares per minute). Most (70%) of the decline occurred by 2007, and the slowing in this period is almost entirely explained by declining prices of export commodities such as soy and beef. Government repression measures explain the continued decline from 2008 to 2012, but an important part of the effect of the repression program hinges on a fragile base: a 2008 decision that makes the absence of pending fines a prerequisite for obtaining credit for agriculture and ranching. This could be reversed at the stroke of a pen, and this is a priority for the powerful “ruralist” voting bloc in the National Congress. Massive plans for highways, dams, and other infrastructure in Amazonia, if carried out, will add to forces in the direction of increased deforestation. Deforestation occurs for a wide variety of reasons that vary in different historical periods, in different locations, and in different phases of the process at any given location. Economic cycles, such as recessions and the ups and downs of commodity markets, are one influence. The traditional economic logic, where people deforest to make a profit by producing products from agriculture and ranching, is important but only a part of the story. Ulterior motives also drive deforestation. Land speculation is critical in many circumstances, where the increase in land values (bid up, for example, as a safe haven to protect money from hyperinflation) can yield much higher returns than anything produced by the land. Even without the hyperinflation that came under control in 1994, highway projects can yield speculative fortunes to those who are lucky or shrewd enough to have holdings along the highway route. The practical way to secure land holdings is to deforest for cattle pasture. This is also critical to obtaining and defending legal title to the land. In the past, it has also been the key to large ranches gaining generous fiscal incentives from the government. Money laundering also makes deforestation attractive, allowing funds from drug trafficking, tax evasion, and corruption to be converted to “legal” money. Deforestation receives impulses from logging, mining, and, especially, road construction. Soybeans and cattle ranching are the main replacements for forest, and recently expanded export markets are giving strength to these drivers. Population growth and household dynamics are important for areas dominated by small farmers. Extreme degradation, where tree mortality from logging and successive droughts and forest fires replace forest with open nonforest vegetation, is increasing as a kind of deforestation, and is likely to increase much more in the future. Controlling deforestation requires addressing its multiple causes. Repression through fines and other command-and-control measures is essential to avoid a presumption of impunity, but these controls must be part of a broader program that addresses underlying causes. The many forms of government subsidies for deforestation must be removed or redirected, and the various ulterior motives must be combated. Industry agreements restricting commodity purchases from properties with illegal deforestation (or from areas cleared after a specified cutoff) have a place in efforts to contain forest loss, despite some problems. A “soy moratorium” has been in effect since 2006, and a “cattle agreement” since 2009. Creation and defense of protected areas is an important part of deforestation control, including both indigenous lands and a variety of kinds of “conservation units.” Containing infrastructure projects is essential if deforestation is to be held in check: once roads are built, much of what happens is outside the government’s control. The notion that the 2005–2012 deforestation slowdown means that the process is under control and that infrastructure projects can be built at will is extremely dangerous. One must also abandon myths that divert efforts to contain deforestation; these include “sustainable logging” and the use of “green” funds for expensive programs to reforest degraded lands rather than retain areas of remaining natural forests. Finally, one must provide alternatives to support the rural population of small farmers. Large investors, on the other hand, can fend for themselves. Tapping the value of the environmental services of the forest has been proposed as an alternative basis for sustaining both the rural population and the forest. Despite some progress, a variety of challenges remain. One thing is clear: most of Brazil’s Amazonian deforestation is not “development.” Trading the forest for a vast expanse of extensive cattle pasture does little to secure the well-being of the region’s rural population, is not sustainable, and sacrifices Amazonia’s most valuable resources.

Article

Lora Fleming, Michael Depledge, Niall McDonough, Mathew White, Sabine Pahl, Melanie Austen, Anders Goksoyr, Helena Solo-Gabriele, and John Stegeman

The interdisciplinary study of oceans and human health is an area of increasing global importance. There is a growing body of evidence that the health of the oceans and that of humans are inextricably linked and that how we interact with and affect our oceans and seas will significantly influence our future on earth. Since the emergence of modern humans, the oceans have served as a source of culture, livelihood, expansion, trade, food, and other resources. However, the rapidly rising global population and the continuing alterations of the coastal environment are placing greater pressure on coastal seas and oceans. Negative human impacts, including pollution (chemical, microbial, material), habitat destruction (e.g., bottom trawling, dredging), and overfishing, affect not only ecosystem health, but also human health. Conversely, there is potential to promote human health and well-being through sustainable interactions with the coasts and oceans, such as the restoration and preservation of coastal and marine ecosystems. The study of oceans and human health is inherently interdisciplinary, bringing together the natural and social sciences as well as diverse stakeholder communities (including fishers, recreational users, private enterprise, and policymakers). Reviewing history and policy with regard to oceans and human health, in addition to known and potential risks and benefits, provides insights into new areas and avenues of global cooperation, with the possibility for collaboratively addressing the local and global challenges of our interactions with the oceans, both now and in the future.

Article

Assessing the environmental footprints of modern agriculture requires a balanced approach that sets the obviously negative effects (e.g., incidents with excessive use of inputs) against benefits stemming from increased resource use efficiencies. In the case of rice production, the regular flooding of fields comprises a distinctive feature, as compared to other crops, which directly or indirectly affects diverse impacts on the environment. In the regional context of Southeast Asia, rice production is characterized by dynamic changes in terms of crop management practices, so that environmental footprints can only be assessed from time-dependent developments rather than from a static view. The key for the Green Revolution in rice was the introduction of high-yielding varieties in combination with a sufficient water and nutrient supply as well as pest management. More recently, mechanization has evolved as a major trend in modern rice production. Mechanization has diverse environmental impacts and may also be instrumental in tackling the most drastic pollution source from rice production, namely, open field burning of straw. As modernization of rice production is imperative for future food supplies, there is scope for developing sustainable and high-yielding rice production systems by capitalizing on the positive aspects of modernization from a local to a global scale.

Article

Amy W. Ando and Noelwah R. Netusil

Green stormwater infrastructure (GSI), a decentralized approach for managing stormwater that uses natural systems or engineered systems mimicking the natural environment, is being adopted by cities around the world to manage stormwater runoff. The primary benefits of such systems include reduced flooding and improved water quality. GSI projects, such as green roofs, urban tree planting, rain gardens and bioswales, rain barrels, and green streets may also generate cobenefits such as aesthetic improvement, reduced net CO2 emissions, reduced air pollution, and habitat improvement. GSI adoption has been fueled by the promise of environmental benefits along with evidence that GSI is a cost-effective stormwater management strategy, and methods have been developed by economists to quantify those benefits to support GSI planning and policy efforts. A body of multidisciplinary research has quantified significant net benefits from GSI, with particularly robust evidence regarding green roofs, urban trees, and green streets. While many GSI projects generate positive benefits through ecosystem service provision, those benefits can vary with details of the location and the type and scale of GSI installation. Previous work reveals several pitfalls in estimating the benefits of GSI that scientists should avoid, such as double counting values, counting transfer payments as benefits, and using values for benefits like avoided carbon emissions that are biased. Important gaps remain in current knowledge regarding the benefits of GSI, including benefit estimates for some types of GSI elements and outcomes, understanding how GSI benefits last over time, and the distribution of GSI benefits among different groups in urban areas.

Article

The terms “land cover” and “land use” are often used interchangeably, although they have different meanings. Land cover is the biophysical material at the surface of the Earth, whereas land use refers to how people use the land surface. Land use concerns the resources of the land, their products, and benefits, in addition to land management actions and activities. The history of changes in land use has passed through several major stages driven by developments in science and technology and demands for food, fiber, energy, and shelter. Modern changes in land use have been increasingly affected by anthropogenic activities at a scale and magnitude that have not been seen. These changes in land use are largely driven by population growth, urban expansion, increasing demands for energy and food, changes in diets and lifestyles, and changing socioeconomic conditions. About 70% of the Earth’s ice-free land surface has been altered by changes in land use, and these changes have had environmental impacts worldwide, ranging from effects on the composition of the Earth’s atmosphere and climate to the extensive modification of terrestrial ecosystems, habitats, and biodiversity. A number of different methods have been developed give a thorough understanding of these changes in land use and the multiple effects and feedbacks involved. Earth system observations and models are examples of two crucial technologies, although there are considerable uncertainties in both techniques. Cross-disciplinary collaborations are highly desirable in future studies of land use and management. The goals of mitigating climate change and maintaining sustainability should always be considered before implementing any new land management strategies.

Article

The increased pressure on groundwater has resulted in a major deterioration of the overall status of this resource. Despite efforts to control the degradation of underground water bodies, most aquifers worldwide experience serious quality and quantity problems. New emerging issues around groundwater resources have become relevant and pose additional protection and management challenges. Climate change, with predictable impacts on temperature and precipitation, will cause considerable fluctuations in aquifer recharge levels and subsequent problems in the status of these water bodies. Expected reductions in water availability will increase groundwater withdrawals not just for irrigation but also for urban and industrial water use. Declines in stored water will have an impact on many freshwater ecosystems whose survival depends on the status of groundwater bodies. Furthermore, land subsidence, as a side effect of aquifer overexploitation, involves land collapse and deformation that are especially harmful for urban areas and deteriorate physical and hydrological water systems. All these new challenges require integrated planning strategies and multisectorial solutions to curtail the deterioration of these resources. Although these issues have been studied, in-depth analyses of the economic, social, and policy implications of groundwater management strategies are still necessary.

Article

David A. Robinson, Fiona Seaton, Katrina Sharps, Amy Thomas, Francis Parry Roberts, Martine van der Ploeg, Laurence Jones, Jannes Stolte, Maria Puig de la Bellacasa, Paula Harrison, and Bridget Emmett

Soils provide important functions, which according to the European Commission include: biomass production (e.g., agriculture and forestry); storing, filtering, and transforming nutrients, substances, and water; harboring biodiversity (habitats, species, and genes); forming the physical and cultural environment for humans and their activities; providing raw materials; acting as a carbon pool; and forming an archive of geological and archaeological heritage, all of which support human society and planetary life. The basis of these functions is the soil natural capital, the stocks of soil material. Soil functions feed into a range of ecosystem services which in turn contribute to the United Nations sustainable development goals (SDGs). This overarching framework hides a range of complex, often nonlinear, biophysical interactions with feedbacks and perhaps yet to be discovered tipping points. Moreover, interwoven with this biophysical complexity are the interactions with human society and the socioeconomic system which often drives our attitudes toward, and the management and exploitation of, our environment. Challenges abound, both social and environmental, in terms of how to feed an increasingly populous and material world, while maintaining some semblance of thriving ecosystems to pass on to future generations. How do we best steward the resources we have, keep them from degradation, and restore them where necessary as soils underpin life? How do we measure and quantify the soil resources we have, how are they changing in time and space, what can we predict about their future use and function? What is the value of soil resources, and how should we express it? This article explores how soil properties and processes underpin ecosystem services, how to measure and model them, and how to identify the wider benefits they provide to society. Furthermore, it considers value frameworks, including caring for our resources.

Article

Agriculture is practiced on 38% of the landmass on Earth, and having replaced natural ecosystems, it is the largest terrestrial biome on Earth. Agricultural biomes are typically focused on annual crops that are produced as a succession of genetically uniform monocultures. Compared to the ecosystems they replaced, agroecosystems provide fewer ecosystem functions and contain much less biodiversity. The large-scale conversion from natural lands to agriculture occurred centuries ago in the Old World (Africa, China, Europe, and India), but in many areas during the latter 20th and early 21st centuries, especially tropical areas with rich biodiversity, agriculture is an emerging industry. Here, displacement of natural ecosystems is also a late 20th-century occurrence, and much of it is ongoing. Regardless of where or when agriculture was established, biodiversity declined and ecosystem services were eroded. Agricultural practices are the second largest contributor to biodiversity loss, due to the loss of habitat, competition for resources, and pesticide use. Most (~96%) of the land used to produce crops is farmed using conventional methods, while smaller percentages are under organic production (~2%) or are producing biotech crops (~4%). Regardless of how agriculture is practiced, it exacts a toll on biodiversity and ecosystem services. While organic agriculture embraces many ecological principals in producing food, it fails to recognize the value of biotechnology as a tool to reduce the environmental impact of agriculture. Herbicide- and/or insect-resistant crops are the most widely planted biotech crops worldwide. Biotech crops in general, but especially insect-resistant crops, reduce pesticide use and increase biodiversity. The widespread adoption of glyphosate-resistant crops increased the use of this herbicide, and resistance evolved in weeds. On the other hand, glyphosate has less environmental impacts than other herbicides. Because of the limited scale of biotech production, it will not have large impacts on mitigating the effects of agriculture on biodiversity and ecosystem services. To have any hope of reducing the environmental impact of agriculture, agro-ecology principals and biotechnology will need to be incorporated. Monetizing biodiversity and ecosystem services through incorporation into commodity prices will incentivize producers to be part of the biodiversity solution. A multi-level biodiversity certification is proposed that is a composite score of the biodiversity and ecosystem services of an individual farm and the growing region were the food is produced. Such a system would add value to the products from farms and ranches proportionate to the level by which their farm and region provides biodiversity and ecosystem services as the natural ecosystem it replaced.

Article

Bartosz Bartkowski

Massive population declines and species extinction have characterized the 20th and early 21st centuries. These local and global phenomena do not only involve the loss of particular species, habitats, and ecosystem services; they also result in a general reduction in biotic diversity. Ecological research has long indicated the importance of biodiversity within and across ecosystems. However, capturing the economic value of biodiversity remains a challenge. Biodiversity is a multidimensional public good; it encompasses the diversity of genes, species, functional groups, habitats, and ecosystems. A large empirical literature in biology and ecology indicates that biodiversity has a stabilizing effect on ecosystems—the higher the biodiversity within a given ecosystem type, the more well-functioning (productive, stable, and resilient) is the ecosystem. However, the economic importance of biodiversity goes beyond this stabilizing effect. The multidimensionality and complexity of the biodiversity concept has resulted in a multitude of approaches to its economic valuation. While the theoretical and conceptual literature has focused on biodiversity as insurance and as a pool of options, empirical studies have been much more diverse. Given the public-good nature and complexity of biodiversity, stated preference methods are particularly common. The focus on biodiversity valuation has fostered many important theoretical and methodological developments. Many estimates exist of the willingness to pay for biodiversity conservation in different countries across the world; however, relatively few studies have been conducted in developing countries despite the considerably higher biodiversity levels there as compared with the better-covered developed countries. Valuation of biodiversity is a controversial subject, and the economic, predominantly anthropocentric approach has been criticized frequently. However, non-anthropocentric accounts of biodiversity value are problematic for their own reasons; an important question is whether biodiversity has intrinsic value and, if yes, whether this can be captured within the economic perspective. Valuation of biodiversity remains a vibrant topic at the intersections of disciplines such as ecology, environmental ethics, and economics.

Article

Alexandra Dehnhardt, Kati Häfner, Anna-Marie Blankenbach, and Jürgen Meyerhoff

All types of wetlands around the world are heavily threatened. According to the Ramsar Convention on Wetlands, they comprise “areas of marsh, fen, peatland or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish, or salt.” While they are estimated still to cover 1,280 million hectares worldwide, large shares of wetlands were destroyed during the 20th century, mainly as a result of land use changes. According to the Millennium Ecosystem Assessment (MEA), this applies above all to North America, Europe, Australia, and New Zealand, but wetlands were also heavily degraded in other parts of the world. Moreover, degradation is expected to accelerate in the future due to global environmental change. These developments are alarming because wetlands deliver a broad range of ecosystem services to societies, contributing significantly to human well-being. Among those services are water supply and purification, flood regulation, climate regulation, and opportunities for recreation, to name only a few. The benefits humans derive from those services, however, often are not reflected in markets as they are public goods in nature. Thus, arguing in favor of the preservation of wetlands requires, inter alia, to make the non-marketed economic benefits more visible and comparable to those from alternative—generally private—uses of converted wetlands, which are often much smaller. The significance of the non-market value of wetland services has been demonstrated in the literature: the benefits derived from wetlands have been one of the most frequently investigated topics in environmental economics and are integrated in meta-analyses devoted to synthesizing the present knowledge about the value of wetlands. The meta-analyses that cover both different types of wetlands in different landscapes as well as different geographical regions are supplemented by recent primary studies on topics of increasing importance such as floodplains and peatlands, as they bear, for example, a large flood regulation and climate change mitigation potential, respectively. The results underpin that the conversion of wetlands is accompanied by significant losses in benefits. Moreover, wetland preservation is economically beneficial given the large number of ecosystem services provided by wetland ecosystems. Thus, decision-making that might affect the status and amount of wetlands directly or indirectly should consider the full range of benefits of wetland ecosystems.