1-20 of 23 Results

  • Keywords: environment x
Clear all

Article

Social and Environmental Implications of Plantation Agriculture in Malaysia and Indonesia  

Jean-François Bissonnette and Rodolphe De Koninck

Plantation farming emerged as a large-scale system of specialized agriculture in the tropics under European colonialism, in opposition to smallholding subsistence agriculture. Despite large-scale plantations in the tropics, smallholdings have consistently formed the backbone of rural economies, to the extent that they have become the main producers of some of the former plantation crops. In the early 21st century, oil palm has become the third most important cash crop in the world in terms of area cultivated, largely due to the expansion of this crop in Malaysia and Indonesia. Although in these countries, oil palm is primarily cultivated in large plantations, smallholders cultivate a large share of the territory devoted to this crop. This is related to the programs set up by governments of Malaysia and Indonesia during the second half of the 20th century, to provide smallholders with land plots in capital intensive large-scale oil palm schemes. Despite the relative success encountered by these programs in both countries, policymakers have continued to insist on the development of private centrally managed large-scale plantations. Yet, smallholding family farming has remained the most resilient economic activity in rural areas of the tropics. This system has proven adaptive to environmental change and, given proper access to markets and capital, particularly responsive to market signals. Today, many small-holdings are still characterized by the diversity of crops cultivated, low use of chemical inputs, reliance on family labor, and high levels of ecological knowledge. These are some of the main factors explaining why small family farms have proven more efficient than large plantations and, in the long term, more economically and ecologically resilient. Yet, large-scale land acquisitions for monocrop production remain a current issue, highlighting the paradox of the latest stage of agrarian capitalism and of its persistent built-in disregard for environmental deterioration.

Article

Framing Complexity in Environmental and Human Health  

Hans Keune and Timo Assmuth

Framing and dealing with complexity are crucially important in environment and human health science, policy, and practice. Complexity is a key feature of most environment and human health issues, which by definition include aspects of the environment and human health, both of which constitute complex phenomena. The number and range of factors that may play a role in an environment and human health issue are enormous, and the issues have a multitude of characteristics and consequences. Framing this complexity is crucial because it will involve key decisions about what to take into account when addressing environment and human health issues and how to deal with them. This is not merely a technical process of scientific framing, but also a methodological decision-making process with both scientific and societal implications. In general, the benefits and risks related to such issues cannot be generalized or objectified, and will be distributed unevenly, resulting in health and environmental inequalities. Even more generally, framing is crucial because it reflects cultural factors and historical contingencies, perceptions and mindsets, political processes, and associated values and worldviews. Framing is at the core of how we as humans relate to, and deal with, environment and human health, as scientists, policymakers, and practitioners, with models, policies, or actions.

Article

The Environmental History of Russia  

Stephen Brain

Russian environmental history is a new field of inquiry, with the first archivally based monographs appearing only in the last years of the 20th century. Despite the field’s youth, scholars studying the topic have developed two distinct and contrasting approaches to its central question: How should the relationship between Russian culture and the natural world be characterized? Implicit in this question are two others: Is the Russian attitude toward the non-human world more sensitive than that which prevails in the West; and if so, is the Russian environment healthier or more stable than that of the United States and Western Europe? In other words, does Russia, because of its traditional suspicion of individualism and consumerism, have something to teach the West? Or, on the contrary, has the Russian historical tendency toward authoritarianism and collectivism facilitated predatory policies that have degraded the environment? Because environmentalism as a political movement and environmental history as an academic subject both emerged during the Cold War, at a time when the Western social, political, and economic system vied with the Soviet approach for support around the world, the comparative (and competitive) aspect of Russian environmental history has always been an important factor, although sometimes an implicit one. Accordingly, the existing scholarly works about Russian environmental history generally fall into one of two camps: one very critical of the Russian environmental record and the seeming disregard of the Russian government for environmental damage, and a somewhat newer group of works that draw attention to the fundamentally different concerns that motivate Russian environmental policies. The first group emphasizes Russian environmental catastrophes such as the desiccated Aral Sea, the eroded Virgin Lands, and the public health epidemics related to the severely polluted air of Soviet industrial cities. The environmental crises that the first group cites are, most often, problems once prevalent in the West, but successfully ameliorated by the environmental legislation of the late 1960s and early 1970s. The second group, in contrast, highlights Russian environmental policies that do not have strict Western analogues, suggesting that a thorough comparison of the Russian and Western environmental records requires, first of all, a careful examination of what constitutes environmental responsibility.

Article

Macroeconomics and the Environment  

Partha Sen

Macroeconomics deals with economics at the aggregate level. This could be at a national level or that of the interaction between nations. Production of output necessarily involves pollution and degrading the environment. Therefore, environmental issues inevitably are a factor. Some problems that have been highlighted in the literature are surveyed here. It has been argued that a poor country deliberately lowers its environmental standards to steal jobs from other countries. What is the theoretical underpinning and the evidence for this assertion? The evidence is very weak in support of this. Moreover, in the fight against climate change, poorer countries claim exemption from tightening their emissions norms because of their poverty. Similarly, although equity demands this, it could pose serious challenges to fighting climate change—oil producers would pump oil faster if they foresaw it becoming useless. A piecemeal approach will not work. A more basic question is how to introduce natural resource use in national income accounts to give meaning to the notion of sustainability. National income accounts do not take into account non-market activities. Some progress has been made in the theory and empirical implementation of sustainability by including non-market activities. A lot of work has been done but a lot more still needs to be done in this area.

Article

Economics of Waste Minimization, Recycling, and Disposal  

Rawshan Ara Begum and Sofia Ehsan

With rapid population growth and urbanization around the world, waste generation (solid, liquid, and gaseous) is increasing. Waste management is a critical factor in ensuring human health and environmental protection, which is a major concern of both developing and developed countries. Waste management systems and practices, including collection, transport, treatment, and disposal, vary between developed and developing countries or even in urban and rural areas. In response, economic models have been developed to help decision-makers choose the most efficient mix of policy levers to regulate solid waste and recycling activities. The economic models employ different kinds of data to estimate the factors that contribute to solid waste generation and recycling, and to estimate the effectiveness of the policy options employed for waste management and disposal. Thus, economic analysis plays a crucial role in the proper and efficient management of solid waste, and leads to significant developments in the field of environmental economics to reflect the costs of pollution related to waste, measure the environmental benefits of waste management, find cost-efficient solutions, and shape policies for environmental protection and sustainable development. Economic assessment and cost-benefit analysis help to determine optimal policies for efficient use of resources and management of waste problems to achieve sustainable waste management, especially in developing and least developed countries. Crucial challenges include issues such as the limits of waste hierarchy, integration of sustainable waste management, public-private cooperation, and linear versus circular economy.

Article

Market Failures, the Environment, and Human Health  

Karyn Morrissey

Knowledge of the important role that the environment plays in determining human health predates the modern public health era. However, the tendency to see health, disease, and their determinants as attributes of individuals rather than characteristics of communities meant that the role of the environment in human health was seldom accorded sufficient importance during much of the 20th century. Instead, research began to focus on specific risk factors that correlated with diseases of greatest concern, i.e., the non-communicable diseases such as cardiovascular disease, asthma, and diabetes. Many of these risk factors (e.g., smoking, alcohol consumption, and diet) were aspects of individual lifestyle and behaviors, freely chosen by the individual. Within this individual-centric framework of human health, the standard economic model for human health became primarily the Grossman model of health and health care demand. In this model, an individual’s health stock may be increased by investing in health (by consuming health services, for example) or decreased by endogenous (age) or exogenous (smoking) individual factors. Within this model, individuals used their available resources, their budget, to purchase goods and services that either increased or decreased their health stock. Grossman’s model provides a consumption-based approach to human health, where individuals purchase goods and services required to improve their individual health in the marketplace. Grossman’s model of health assumes that the goods and services required to optimize good health can be purchased through market-based interactions and that these goods and services are optimally priced—that the value of the goods and services are reflected in their price. In reality, many types of goods and services that are good for human health are not available to purchase, or if they are available they are undervalued in the free market. Across the environmental and health literature, these goods and services are, today, broadly referred to as “ecosystem services for human health.” However, the quasi-public good nature of ecosystem services for human health means that the private market will generate a suboptimal environment for both individual and public health outcomes. In the face of continued austerity and scarce public resources, understanding the role of the environment in human health may help to alleviate future health care demand by decreasing (or increasing) environmental risk (or benefits) associated with health outcomes. However, to take advantage of the role that the environment plays in human health requires a fundamental reorientation of public health policy and spending to include environmental considerations.

Article

History of Agriculture in the United States  

Pamela Riney-Kehrberg

Agriculture is at the very center of the human enterprise; its trappings are in evidence all around, yet the agricultural past is an exceptionally distant place from modern America. While the majority of Americans once raised a significant portion of their own food, that ceased to be the case at the beginning of the 20th century. Only a very small portion of the American population today has a personal connection to agriculture. People still must eat, but the process by which food arrives on their plates is less evident than ever. The evolution of that process, with all of its many participants, is the stuff of agricultural history. The task of the agricultural historian is to make that past evident, and usable, for an audience that is divorced from the production of food. People need to know where their food comes from, past and present, and what has gone into the creation of the modern food system.

Article

Bioeconomic Models  

Ihtiyor Bobojonov

Bioeconomic models are analytical tools that integrate biophysical and economic models. These models allow for analysis of the biological and economic changes caused by human activities. The biophysical and economic components of these models are developed based on historical observations or theoretical relations. Technically these models may have various levels of complexity in terms of equation systems considered in the model, modeling activities, and programming languages. Often, biophysical components of the models include crop or hydrological models. The core economic components of these models are optimization or simulation models established according to neoclassical economic theories. The models are often developed at farm, country, and global scales, and are used in various fields, including agriculture, fisheries, forestry, and environmental sectors. Bioeconomic models are commonly used in research on environmental externalities associated with policy reforms and technological modernization, including climate change impact analysis, and also explore the negative consequences of global warming. A large number of studies and reports on bioeconomic models exist, yet there is a lack of studies describing the multiple uses of these models across different disciplines.

Article

The Qanat System of Iran and the Maghreb  

Ahmad Abbasnejad and Behnam Abbasnejad

A qanat is a kind of subterranean horizontal tunnel and usually excavated in soft sediments. It conducts groundwater to the surface at its emerging point. In addition to the tunnel, each qanat contains anywhere from several to hundreds of vertical wells for removal of dig materials and ventilation of the tunnel. These wells get increasingly deep until the deepest and last one, which is known as the mother well. According to the literature, qanat was first developed around 800 to 1000 bc in northwest of Iran and afterward was utilized in many other countries in Asia, Africa, southern Europe, and even (through independent invention) in the Americas. The areas utilizing the qanat have three characteristics in common: the shortage of surficial water (streams) indicating an arid or semiarid climate; suitable topographical slopes that help conduct groundwater to the surface for a distance by a gently sloping tunnel (qanat); and the presence of unconsolidated sediments (usually alluvial) that both act as subsurface reservoirs and as material that can be easily excavated using primitive tools. In another words, dry areas with mountain-plain topography, alluvial fans, and stream beds (wadis) are suitable for digging qanats. Major parts of Iran and some parts of the Maghreb have such conditions. This is why these two regions have been somewhat dependent on qanats for their water supply. Although the invention of qanats helped human settlement and welfare in drier countries, it had some negative impacts. The presence of humans due to qanats directly impacted the wildlife and vegetation cover of those areas. And in some cases, changes in the groundwater regime caused wilting and drying because of limited water resources for plants and wildlife. The history of qanat development may be viewed as undergoing three major stages in the dry zones of Iran and the Maghreb, as well as in many other countries where they are present. During the first stage, from 1,000 to 2,000 years after their introduction (depending upon the region) qanats rapidly proliferated as technology spread to new areas. During the second stage, new qanat construction halted, as they had been developed in almost all suitable areas. In the third stage, beginning in some places in the early 20th century, such factors as increasing demand for groundwater, technical developments in water well drilling, and problems with qanat maintenance and urban sprawl caused many qanats to dry out; their numbers in operation have dropped. This decline will continue with varying rates in different countries. Unfortunately, the rate of decline in Iran, the home country of qanats, is more than many other places. This is mainly due to mismanagement.

Article

How Environmental Degradation Impoverishes the Poor  

Edward B. Barbier

Globally, around 1.5 billion people in developing countries, or approximately 35% of the rural population, can be found on less-favored agricultural land (LFAL), which is susceptible to low productivity and degradation because the agricultural potential is constrained biophysically by terrain, poor soil quality, or limited rainfall. Around 323 million people in such areas also live in locations that are highly remote, and thus have limited access to infrastructure and markets. The households in such locations often face a vicious cycle of declining livelihoods, increased ecological degradation and loss of resource commons, and declining ecosystem services on which they depend. In short, these poor households are prone to a poverty-environment trap. Policies to eradicate poverty, therefore, need to be targeted to improve the economic livelihood, productivity, and income of the households located on remote LFAL. The specific elements of such a strategy include involving the poor in paying for ecosystem service schemes and other measures that enhance the environments on which the poor depend; targeting investments directly to improving the livelihoods of the rural poor, thus reducing their dependence on exploiting environmental resources; and tackling the lack of access by the rural poor in less-favored areas to well-functioning and affordable markets for credit, insurance, and land, as well as the high transportation and transaction costs that prohibit the poorest households in remote areas to engage in off-farm employment and limit smallholder participation in national and global markets.

Article

Crop Rotation and Climate Change Adaptation in Argentina’s Agriculture Sector  

Ariel R. Angeli, Federico E. Bert, Sandro Díez-Amigo, Yuri Soares, Jaquelina M. Chaij, Gustavo D. Martini, F. Martín Montané, Alejandro Pardo Vegezzi, and Federico Schmidt

During the past two decades, extensive agriculture, particularly soybean production, has progressively replaced other crops in Argentina. This transformation was driven by economic, technological, environmental, and organizational factors, such as the increasing demand for agricultural commodities, technological advances, organizational innovations, and climate fluctuations. The expansion of soybean production has brought a substantial increase in agricultural revenue for Argentina. However, the predominance of soybean cultivation poses significant challenges, such as diminished soil fertility, reduction and increased variability in crop yields, ecological imbalance, increased greenhouse gas (GHG) emissions, and vulnerability to climate change. Crop rotation, particularly balanced crop rotation, may result in very large positive impacts on soybean yields, especially in unfavorable climatic conditions such as those experienced during the La Niña ENSO phase in Argentina. In addition to this positive impact on agricultural productivity and climate adaptation, in some contexts crop rotation may also contribute to the reduction of GHG emissions, increased input energy efficiency, and improved environmental outcomes. The 2018 Argentinian Association of Regional Consortia for Agricultural Experimentation and Inter-American Development Bank (AACREA-IADB) Integrated Crop Rotation Database compiled and harmonized the information from agricultural diaries kept by Regional Consortia for Agricultural Experimentation (CREA) members in Argentina from 1998 to 2016. This new consolidated data set has replaced previous regional templates, and it is expected to continue to be expanded with new information periodically, offering opportunities for further research on the impact of crop rotation on climate adaptation and on other topics in agricultural and environmental economics.

Article

Toward a Holistic Environmental Aesthetic  

Nathalie Blanc

Environmental aesthetics encompasses aesthetic relationships to and in the environment, including an urban aesthetic and an aesthetic of nature—which emerged in the 18th and 19th centuries both from the sciences and from the distinction from the scientific in the aesthetic observations of nature. Environmental aesthetics notably comprises philosophical, artistic, and geographical work. Increasingly since the 1990s, the social and environmental crisis, and particularly climate change, is and has been causing shifts within this field of research and reflection. As of the 2020s, the admiration humans can bear toward nature is not without fear of its disappearance caused by their own activities. Ethics is more and more linked to aesthetics as humans are morally affected by this catastrophic environmental degradation. Thus, a certain anxiety quickly reveals itself in the face of planetary transformations. What can the geographer do? Since the 1990s, the discipline has been inviting thought about the environment from the aesthetic experience, challenging or interrogating the perception, understanding, and relationship to the natural surroundings. The geographer has been attempting to apprehend through creative research—such as “psychogeographical” situational walks (dérive, situation of inquiry, influence map), and, more generally, artistic works firmly rooted in the whole landscape question—the ways of redefining local situations and places. The need is to face three major challenges. First, there is the necessity to explore how planetary threats transform the perceptions of the environment. Anxieties reflect the difficulties of politics. Second, an aesthetic of the ordinary should be investigated as an ordinary environmentalism, meaning that which is related to the daily creation of environments. Third, the importance of research creation and ecoplastic forms of art needs to be highlighted (art and environment-making processes).

Article

Radiation and the Environment  

E. Jerry Jessee

The “Atomic Age” has long been recognized as a signal moment in modern history. In popular memory, images of mushroom clouds from atmospheric nuclear weapons tests recall a period when militaries and highly secretive atomic energy agencies poisoned the global environment and threatened human health. Historical scholarship has painted a more complicated picture of this era by showing how nuclear technologies and radioactive releases transformed the environment sciences and helped set the stage for the scientific construction of the very idea of the “global environment.” Radioactivity presented scientists with a double-edged sword almost as soon as scientists explained how certain unstable chemical elements emit energic particles and rays in the process of radioactive decay at the turn of the 20th century. Throughout the 1920s and 1930s, scientists hailed radioactivity as a transformative discovery that promised to transform atomic theory and biomedicine by using radioisotopes—radioactive versions of stable chemical elements—which were used to tag and trace physiological processes in living systems. At the same time, the perils of overexposure to radioactivity were becoming more apparent as researchers and industrial workers laboring in new radium-laced luminescent paint industries began suffering from radiation-induced illnesses. The advent of a second “Atomic Age” in wake of the bombing of Japan was characterized by increased access to radiotracer technologies for science and widespread anxiety about the health effects of radioactive fallout in the environment. Powerful new atomic agencies and military institutions created new research opportunities for scientists to study the atmospheric, oceanic, and ecological pathways through which bomb test radiation could make their way to human bodies. Although these studies were driven by concerns about health effects, the presence of energy-emitting radioactivity in the environment also meant that researchers could utilize it as a tracer to visualize basic environmental processes. Throughout the 1950s and early 1960s, as a result, ecologists pioneered the use of radiotracers to investigate energy flows and the metabolism of ecosystem units. Oceanographers similarly used bomb blast radiation to trace the physical processes in oceans and the uptake of radioactivity in aquatic food chains. Meteorologists meanwhile tracked bomb debris as high as the stratosphere to predict fallout patterns and trace large-scale atmospheric phenomenon. By the early 1960s, these studies documented how radioactive fallout produced by distant nuclear tests spread across the globe and infiltrated the entire planet’s air, water, biosphere, and human bodies. In 1963, the major nuclear powers agreed to end above-ground nuclear testing with the Limited Test Ban Treaty, the first international treaty to recognize a global environmental hazard of planetary proportions. Throughout the 1960s and into the 1980s, research on the global effects of nuclear weapons continued to shape global environmental thinking and concern as debates about nuclear winter directed professional and public attention toward humanity’s ability to alter the climate.

Article

The Environment in Health and Well-Being  

George Morris and Patrick Saunders

Most people today readily accept that their health and disease are products of personal characteristics such as their age, gender, and genetic inheritance; the choices they make; and, of course, a complex array of factors operating at the level of society. Individuals frequently have little or no control over the cultural, economic, and social influences that shape their lives and their health and well-being. The environment that forms the physical context for their lives is one such influence and comprises the places where people live, learn work, play, and socialize, the air they breathe, and the food and water they consume. Interest in the physical environment as a component of human health goes back many thousands of years and when, around two and a half millennia ago, humans started to write down ideas about health, disease, and their determinants, many of these ideas centered on the physical environment. The modern public health movement came into existence in the 19th century as a response to the dreadful unsanitary conditions endured by the urban poor of the Industrial Revolution. These conditions nurtured disease, dramatically shortening life. Thus, a public health movement that was ultimately to change the health and prosperity of millions of people across the world was launched on an “environmental conceptualization” of health. Yet, although the physical environment, especially in towns and cities, has changed dramatically in the 200 years since the Industrial Revolution, so too has our understanding of the relationship between the environment and human health and the importance we attach to it. The decades immediately following World War II were distinguished by declining influence for public health as a discipline. Health and disease were increasingly “individualized”—a trend that served to further diminish interest in the environment, which was no longer seen as an important component in the health concerns of the day. Yet, as the 20th century wore on, a range of factors emerged to r-establish a belief in the environment as a key issue in the health of Western society. These included new toxic and infectious threats acting at the population level but also the renaissance of a “socioecological model” of public health that demanded a much richer and often more subtle understanding of how local surroundings might act to both improve and damage human health and well-being. Yet, just as society has begun to shape a much more sophisticated response to reunite health with place and, with this, shape new policies to address complex contemporary challenges, such as obesity, diminished mental health, and well-being and inequities, a new challenge has emerged. In its simplest terms, human activity now seriously threatens the planetary processes and systems on which humankind depends for health and well-being and, ultimately, survival. Ecological public health—the need to build health and well-being, henceforth on ecological principles—may be seen as the society’s greatest 21st-century imperative. Success will involve nothing less than a fundamental rethink of the interplay between society, the economy, and the environment. Importantly, it will demand an environmental conceptualization of the public health as no less radical than the environmental conceptualization that launched modern public health in the 19th century, only now the challenge presents on a vastly extended temporal and spatial scale.

Article

A Historical Perspective of Unconventional Oil and Gas Extraction and Public Health  

Erin N. Haynes, Lisa McKenzie, Stephanie A. Malin, and John W. Cherrie

Technological advances in directional well drilling and hydraulic fracturing have enabled extraction of oil and gas from once unobtainable geological formations. These unconventional oil and gas extraction (UOGE) techniques have positioned the United States as the fastest-growing oil and gas producer in the world. The onset of UOGE as a viable subsurface energy abstraction technology has also led to the rise of public concern about its potential health impacts on workers and communities, both in the United States and other countries where the technology is being developed. Herein we review in the national and global impact of UOGE from a historical perspective of occupational and public health. Also discussed are the sociological interactions between scientific knowledge, social media, and citizen action groups, which have brought wider attention to the potential public health implications of UOGE.

Article

Environmental Footprints of Modernization Trends in Rice Production Systems of Southeast Asia  

Reiner Wassmann

Assessing the environmental footprints of modern agriculture requires a balanced approach that sets the obviously negative effects (e.g., incidents with excessive use of inputs) against benefits stemming from increased resource use efficiencies. In the case of rice production, the regular flooding of fields comprises a distinctive feature, as compared to other crops, which directly or indirectly affects diverse impacts on the environment. In the regional context of Southeast Asia, rice production is characterized by dynamic changes in terms of crop management practices, so that environmental footprints can only be assessed from time-dependent developments rather than from a static view. The key for the Green Revolution in rice was the introduction of high-yielding varieties in combination with a sufficient water and nutrient supply as well as pest management. More recently, mechanization has evolved as a major trend in modern rice production. Mechanization has diverse environmental impacts and may also be instrumental in tackling the most drastic pollution source from rice production, namely, open field burning of straw. As modernization of rice production is imperative for future food supplies, there is scope for developing sustainable and high-yielding rice production systems by capitalizing on the positive aspects of modernization from a local to a global scale.

Article

Dairy, Science, Society, and the Environment  

Christopher Lu

Dairy has intertwined with human society since the beginning of civilization. It evolves from art in ancient society to science in the modern world. Its roles in nutrition and health are underscored by the continuous increase in global consumption. Milk production increased by almost 50% in just the past quarter century alone. Population growth, income rise, nutritional awareness, and science and technology advancement contributed to a continuous trend of increased milk production and consumption globally. With a fourfold increase in milk production per cow since the 1940s, the contemporary dairy industry produces more milk with fewer cows, and consumes less feed and water per liter of milk produced. The dairy sector is diversified, as people from a wider geographical distribution are consuming milk, from cattle to species such as buffalo, goat, sheep, and camel. The dairy industry continues to experience structural changes that impact society, economy, and environment. Organic dairy emerged in the 1990s as consumers increasingly began viewing it as an appropriate way of both farming and rural living. Animal welfare, environmental preservation, product safety, and health benefit are important considerations in consuming and producing organic dairy products. Large dairy operations have encountered many environmental issues related to elevated greenhouse gas emissions. Dairy cattle are second only to beef cattle as the largest livestock contributors in methane emission. Disparity in greenhouse gas emissions per dairy animal among geographical regions can be attributed to production efficiency. Although a number of scientific advancements have implications in the inhibition of methanogenesis, improvements in production efficiency through feeding, nutrition, genetic selection, and management remain promising for the mitigation of greenhouse gas emissions from dairy animals. This article describes the trends in milk production and consumption, the debates over the role of milk in human nutrition, the global outlook of organic dairy, the abatement of greenhouse gas emissions from dairy animals, as well as scientific and technological developments in nutrition, genetics, reproduction, and management in the dairy sector.

Article

Epigenetics and the Exposome: Environmental Exposure in Disease Etiology  

Paolo Vineis and Federica Russo

While genomics has been founded on accurate tools that lead to a limited amount of classification error, exposure assessment in epidemiology is often affected by large error. The “environment” is in fact a complex construct that encompasses chemical exposures (e.g., to carcinogens); biological agents (viruses, or the “microbiome”); and social relationships. The “exposome” concept was then put forward to stress the relatively poor development of appropriate tools for exposure assessment when applied to the study of disease etiology. Three layers of the exposome have been proposed: “general external” (including social capital, stress and psychology); “specific external” (including chemicals, viruses, radiation, etc.); and “internal” (including for example metabolism and gut microflora). In addition, there are at least three properties of the exposome: (a) it is based on a refinement of tools to measure exposures (including internal measurements in the body); (b) it involves a broad definition of “exposure” or environment, including overarching concepts at a societal level; and (c) it involves a temporal component (i.e., exposure is analyzed in a life-course perspective). The conceptual and practical challenge is how the different layers (i.e., general, specific external, and internal) connect to each other in a causally meaningful sequence. The relevance of this question pertains to the translation of science into policy—for example, if experiences in early life impact on the adult risk of disease, and on the quality of aging, how is distant action to be incorporated in biological causal models and into policy interventions? A useful causal theory to address scientific and policy question about exposure is based on the concept of information transmission. Such a theory can explain how to connect the different layers of the exposome in a life-course temporal frame and helps identify the best level for intervention (molecular, individual, or population level). In this context epigenetics plays a key role, partly because it explains the long-distance persistence of epigenetic changes via the concept of “epigenetic memory.”

Article

Household Air Pollution in Low and Middle Income Countries  

Caroline A. Ochieng, Cathryn Tonne, Sotiris Vardoulakis, and Jan Semenza

Household air pollution from use of solid fuels (biomass fuels and coal) is a major problem in low and middle income countries, where 90% of the population relies on these fuels as the primary source of domestic energy. Use of solid fuels has multiple impacts, on individuals and households, and on the local and global environment. For individuals, the impact on health can be considerable, as household air pollution from solid fuel use has been associated with acute lower respiratory infections, chronic obstructive pulmonary disease, lung cancer, and other illnesses. Household-level impacts include the work, time, and high opportunity costs involved in biomass fuel collection and processing. Harvesting and burning biomass fuels affects local environments by contributing to deforestation and outdoor air pollution. At a global level, inefficient burning of solid fuels contributes to climate change. Improved biomass cookstoves have for a long time been considered the most feasible immediate intervention in resource-poor settings. Their ability to reduce exposure to household air pollution to levels that meet health standards is however questionable. In addition, adoption of improved cookstoves has been low, and there is limited evidence on how the barriers to adoption and use can be overcome. However, the issue of household air pollution in low and middle income countries has gained considerable attention in recent years, with a range of international initiatives in place to address it. These initiatives could enable a transition from biomass to cleaner fuels, but such a transition also requires an enabling policy environment, especially at the national level, and new modes of financing technology delivery. More research is also needed to guide policy and interventions, especially on exposure-response relationships with various health outcomes and on how to overcome poverty and other barriers to wide-scale transition from biomass fuels to cleaner forms of energy.

Article

Environmental Accounting  

Jean-Louis Weber

Environmental accounting is an attempt to broaden the scope of the accounting frameworks used to assess economic performance, to take stock of elements that are not recorded in public or private accounting books. These gaps occur because the various costs of using nature are not captured, being considered, in many cases, as externalities that can be forwarded to others or postponed. Positive externalities—the natural resource—are depleted with no recording in National Accounts (while companies do record them as depreciation elements). Depletion of renewable resource results in degradation of the environment, which adds to negative externalities resulting from pollution and fragmentation of cyclic and living systems. Degradation, or its financial counterpart in depreciation, is not recorded at all. Therefore, the indicators of production, income, consumption, saving, investment, and debts on which many economic decisions are taken are flawed, or at least incomplete and sometimes misleading, when immediate benefits are in fact losses in the long run, when we consume the reproductive functions of our capital. Although national accounting has been an important driving force in change, environmental accounting encompasses all accounting frameworks including national accounts, financial accounting standards, and accounts established to assess the costs and benefits of plans and projects. There are several approaches to economic environmental accounting at the national level. Of these approaches, one purpose is the calculation of genuine economic welfare by taking into account losses from environmental damage caused by economic activity and gains from unrecorded services provided by Nature. Here, particular attention is given to the calculation of a “Green GDP” or “Adjusted National Income” and/or “Genuine Savings” as well as natural assets value and depletion. A different view considers the damages caused to renewable natural capital and the resulting maintenance and restoration costs. Besides approaches based on benefits and costs, more descriptive accounts in physical units are produced with the purpose of assessing resource use efficiency. With regard to natural assets, the focus can be on assets directly used by the economy, or more broadly, on ecosystem capacity to deliver services, ecosystem resilience, and its possible degradation. These different approaches are not necessarily contradictory, although controversies can be noted in the literature. The discussion focuses on issues such as the legitimacy of combining values obtained with shadow prices (needed to value the elements that are not priced by the market) with the transaction values recorded in the national accounts, the relative importance of accounts in monetary vs. physical units, and ultimately, the goals for environmental accounting. These goals include assessing the sustainability of the economy in terms of conservation (or increase) of the net income flow and total economic wealth (the weak sustainability paradigm), in relation to the sustainability of the ecosystem, which supports livelihoods and well-being in the broader sense (strong sustainability). In 2012, the UN Statistical Commission adopted an international statistical standard called, the “System of Environmental-Economic Accounting Central Framework” (SEEA CF). The SEEA CF covers only items for which enough experience exists to be proposed for implementation by national statistical offices. A second volume on SEEA-Experimental Ecosystem Accounting (SEEA-EEA) was added in 2013 to supplement the SEEA CF with a research agenda and the development of tests. Experiments of the SEEA-EEA are developing at the initiative of the World Bank (WAVES), UN Environment Programme (VANTAGE, ProEcoServ), or the UN Convention on Biological Diversity (CBD) (SEEA-Ecosystem Natural Capital Accounts-Quick Start Package [ENCA-QSP]). Beside the SEEA and in relation to it, other environmental accounting frameworks have been developed for specific purposes, including material flow accounting (MFA), which is now a regular framework at the Organisation for Economic Co-operation and Development (OECD) to report on the Green Growth strategy, the Intergovernmental Panel on Climate Change (IPCC) guidelines for the the UN Framework Convention on Climate Change (UNFCCC), reporting greenhouse gas emissions and carbon sequestration. Can be considered as well the Ecological Footprint accounts, which aim at raising awareness that our resource use is above what the planet can deliver, or the Millennium Ecosystem Assessment of 2005, which presents tables and an overall assessment in an accounting style. Environmental accounting is also a subject of interest for business, both as a way to assess impacts—costs and benefits of projects—and to define new accounting standards to assess their long term performance and risks.