1-2 of 2 Results

  • Keywords: precipitation x
Clear all

Article

Aerosols (tiny solid or liquid particles suspended in the atmosphere) have been in the forefront of environmental and climate change sciences as the primary atmospheric pollutant and external force affecting Earth’s weather and climate. There are two dominant mechanisms by which aerosols affect weather and climate: aerosol-radiation interactions (ARIs) and aerosol-cloud interactions (ACIs). ARIs arise from aerosol scattering and absorption, which alter the radiation budgets of the atmosphere and surface, while ACIs are connected to the fact that aerosols serve as cloud condensation nuclei and ice nuclei. Both ARIs and ACIs are coupled with atmospheric dynamics to produce a chain of complex interactions with a large range of meteorological variables that influence both weather and climate. Elaborated here are the impacts of aerosols on the radiation budget, clouds (microphysics, structure, and lifetime), precipitation, and severe weather events (lightning, thunderstorms, hail, and tornadoes). Depending on environmental variables and aerosol properties, the effects can be both positive and negative, posing the largest uncertainties in the external forcing of the climate system. This has considerably hindered the ability to project future climate changes and make accurate numerical weather predictions.

Article

The global water cycle concept has its roots in the ancient understanding of nature. Indeed, the Greeks and Hebrews documented some of the most some important hydrological processes. Furthermore, Africa, Sri Lanka, and China all have archaeological evidence to show the sophisticated nature of water management that took place thousands of years ago. During the 20th century, a broader perspective was taken and the hydrological cycle was used to describe the terrestrial and freshwater component of the global water cycle. Data analysis systems and modeling protocols were developed to provide the information needed to efficiently manage water resources. These advances were helpful in defining the water in the soil and the movement of water between stores of water over land surfaces. Atmospheric inputs to these balances were also monitored, but the measurements were much more reliable over countries with dense networks of precipitation gauges and radiosonde observations. By the 1960s, early satellites began to provide images that gave a new perception of Earth processes, including a more complete realization that water cycle components and processes were continuous in space and could not be fully understood through analyses partitioned by geopolitical or topographical boundaries. In the 1970s, satellites delivered quantitative radiometric measurements that allowed for the estimation of a number of variables such as precipitation and soil moisture. In the United States, by the late 1970s, plans were made to launch the Earth System Science program, led by the National Aeronautics and Space Agency (NASA). The water component of this program integrated terrestrial and atmospheric components and provided linkages with the oceanic component so that a truly global perspective of the water cycle could be developed. At the same time, the role of regional and local hydrological processes within the integrated “global water cycle” began to be understood. Benefits of this approach were immediate. The connections between the water and energy cycles gave rise to the Global Energy and Water Cycle Experiment (GEWEX)1 as part of the World Climate Research Programme (WCRP). This integrated approach has improved our understanding of the coupled global water/energy system, leading to improved prediction models and more accurate assessments of climate variability and change. The global water cycle has also provided incentives and a framework for further improvements in the measurement of variables such as soil moisture, evapotranspiration, and precipitation. In the past two decades, groundwater has been added to the suite of water cycle variables that can be measured from space. New studies are testing innovative space-based technologies for high-resolution surface water level measurements. While many benefits have followed from the application of the global water cycle concept, its potential is still being developed. Increasingly, the global water cycle is assisting in understanding broad linkages with other global biogeochemical cycles, such as the nitrogen and carbon cycles. Applications of this concept to emerging program priorities, including the Sustainable Development Goals (SDGs) and the Water-Energy-Food (W-E-F) Nexus, are also yielding societal benefits.