1-2 of 2 Results

  • Keywords: rice paddy x
Clear all

Article

Alexander N. Hristov

Agriculture is a significant source of methane, contributing about 12% of the global anthropogenic methane emissions. Major sources of methane from agricultural activities are fermentation in the reticulo-rumen of ruminant animals (i.e., enteric methane), fermentation in animal manure, and rice cultivation. Enteric methane is the largest agricultural source of methane and is mainly controlled by feed dry matter intake and composition of the animal diet (i.e., fiber, starch, lipids). Processes that lead to generation of methane from animal manure are similar to those taking place in the reticulo-rumen. Methane emissions from manure, however, are greatly influenced by factors such as manure management system and ambient temperature. Systems that handle manure as a liquid generate much more methane than systems in which manure is handled as a solid. Low ambient temperatures drastically decrease methane emissions from manure. Once applied to soil, animal manure does not generate significant amounts of methane. Globally, methane emissions from rice cultivation represent about 10% of the total agricultural greenhouse gas emissions. In the rice plant, methane dissolves in the soil water surrounding the roots, diffuses into the cell-wall water of the root cells, and is eventually released through the micropores in the leaves. Various strategies have been explored to mitigate agricultural methane emissions. Animal nutrition, including balancing dietary nutrients and replacement of fiber with starch or lipids; alternative sinks for hydrogen; manipulation of ruminal fermentation; and direct inhibition of methanogenesis have been shown to effectively decrease enteric methane emissions. Manure management solutions include solid-liquid separation, manure covers, flaring of generated methane, acidification and cooling of manure, and decreasing manure storage time before soil application. There are also effective mitigation strategies for rice that can be categorized broadly into selection of rice cultivars, water regime, and fertilization. Alternate wetting and drying and mid-season drainage of rice paddies have been shown to be very effective practices for mitigating methane emissions from rice production.

Article

Throughout the 1900s, the warmth of the current interglaciation was viewed as completely natural in origin (prior to greenhouse-gas emissions during the industrial era). In the view of physical scientists, orbital variations had ended the previous glaciation and caused a warmer climate but had not yet brought it to an end. Most historians focused on urban and elite societies, with much less attention to how farmers were altering the land. Historical studies were also constrained by the fact that written records extended back a few hundred to at most 3,500 years. The first years of the new millennium saw a major challenge to the ruling paradigm. Evidence from deep ice drilling in Antarctica showed that the early stages of the three interglaciations prior to the current one were marked by decreases in concentrations of carbon dioxide (CO2) and methane (CH4) that must have been natural in origin. During the earliest part of the current (Holocene) interglaciation, gas concentrations initially showed similar decreases, but then rose during the last 7,000–5,000 years. These anomalous (“wrong-way”) trends are interpreted by many scientists as anthropogenic, with support from scattered evidence of deforestation (which increases atmospheric CO2) by the first farmers and early, irrigated rice agriculture (which emits CH4). During a subsequent interval of scientific give-and-take, several papers have criticized this new hypothesis. The most common objection has been that there were too few people living millennia ago to have had large effects on greenhouse gases and climate. Several land-use simulations estimate that CO2 emissions from pre-industrial forest clearance amounted to just a few parts per million (ppm), far less than the 40 ppm estimate in the early anthropogenic hypothesis. Other critics have suggested that, during the best orbital analog to the current interglaciation, about 400,000 years ago, interglacial warmth persisted for 26,000 years, compared to the 10,000-year duration of the current interglaciation (implying more warmth yet to come). A geochemical index of the isotopic composition of CO2 molecules indicates that terrestrial emissions of 12C-rich CO2 were very small prior to the industrial era. Subsequently, new evidence has once again favored the early anthropogenic hypothesis, albeit with some modifications. Examination of cores reaching deeper into Antarctic ice reconfirm that the upward gas trends in this interglaciation differ from the average downward trends in seven previous ones. Historical data from Europe and China show that early farmers used more land per capita and emitted much more carbon than suggested by the first land-use simulations. Examination of pollen trends in hundreds of European lakes and peat bogs has shown that most forests had been cut well before the industrial era. Mapping of the spread of irrigated rice by archaeobotanists indicates that emissions from rice paddies can explain much of the anomalous CH4 rise in pre-industrial time. The early anthropogenic hypothesis is now broadly supported by converging evidence from a range of disciplines.