1-4 of 4 Results

  • Keywords: rotations x
Clear all

Article

Agroecology is a science that applies ecological concepts and principles to the design and management of sustainable agricultural ecosystems. Inspired by the diversified models of traditional agriculture, agroecologists promote crop diversification (polycultures, crop-livestock combinations, rotations, agroforestry systems, etc.) as an effective agroecological strategy for introducing more biodiversity into agroecosystems, which in turn provides a number of ecological services to farmers, such as natural soil fertility, pest regulation, pollination, and others. The agroecological approach involves the application of blended agricultural and ecological sciences with indigenous knowledge systems. A variety of agroecological and participatory approaches have shown in many rural areas very positive outcomes, even under adverse environmental and socioeconomic conditions. Potentials include raising crop yields and total farm output, increasing stability of production through diversification, enhancing resilience of farms to climate change, improving diets and income, and conservation of the natural resource base and biodiversity. Agroecological principles can also be applied to break the monoculture nature of modern mechanized farms. Strategies include complex crop rotations, cover cropping in vineyards and fruit orchards, strip intercropping, and so on. The ultimate goal is to develop integrated diversified and resilient agroecosystems with minimal dependence on external, off-farm inputs.

Article

Muhammad Farooq, Ahmad Nawaz, and Faisal Nadeem

Planned crop rotation offers a pragmatic option to improve soil fertility, manage insect pests and diseases, and offset the emission of greenhouse gases. The inclusion of legume crops in crop rotations helps to reduce the use of external nitrogen inputs for legumes and other crops because legumes may fix the atmospheric nitrogen. This also helps to reduce the environmental pollution caused by volatilization and leaching of applied nitrogen. The inclusion of allelopathic crops in rotation may be useful to suppress noxious weeds due to release of the allelochemicals in the rhizosphere. The rotation of tap-rooted crops with shallow rooted crops may result in efficient and productive use of nutrient resources and conservation of soil moisture. Continuous monoculture systems may cause the loss of biodiversity. Land fallowing is an efficient agricultural management technique mostly practiced in arid regions to capture rainwater and store it in the soil profile for later use in crop production. During fallowing, tillage operations are practiced to enhance moisture conservation in the soil. Keeping soil fallow for a season or more restores soil fertility through nutrient deposits; increases organic matter, microbial carbon, and soil microbial diversity; and improves the soil’s physical properties, including aggregation stability and reduced soil compaction due to decreased traffic. In addition, fallowing of land provides biological means of pest (weeds and insects) control by disrupting the life cycle of pests and decreasing reliance on pesticides. Land fallowing can help offset the emission of greenhouse gases from agricultural fields by reducing traffic and increasing carbon sequestration within the soil. Summer fallowing may help to preserve moisture in diverse soil types in the rainfed regions of the world, although it may reduce the carbon sequestration potential of soils over the long term. Energy resources are decreasing, and the inclusion of energy crops in crop rotation may be highly beneficial. Many of the processes, factors, and mechanisms involved in crop rotation and land fallowing are poorly understood and require further investigation.

Article

Soils, the earth’s skin, are at the intersection of the lithosphere, hydrosphere, atmosphere, and biosphere. The persistence of life on our planet depends on the maintenance of soils as they constitute the biological engines of earth. Human population has increased exponentially in recent decades, along with the demand for food, materials, and energy, which have caused a shift from low-yield and subsistence agriculture to a more productive, high-cost, and intensive agriculture. However, soils are very fragile ecosystems and require centuries for their development, thus within the human timescale they are not renewable resources. Modern and intensive agriculture implies serious concern about the conservation of soil as living organism, i.e., of its capacity to perform the vast number of biochemical processes needed to complete the biogeochemical cycles of plant nutrients, such as nitrogen and phosphorus, crucial for crop primary production. Most practices related to intensive agriculture determine a deterioration even in the short-middle term of their physical, chemical, and biological properties, which all together contribute to soil quality, along with an overexploitation of soils as living organisms. Recent trends are turning toward styles of agriculture management that are more sustainable or conservative for soil quality. Usually, use of soils for agricultural purposes deflect them at various degrees from the “natural” soil development processes (pedogenesis), and this shift may be assumed as a divergence from soil sustainability principles. For decades, the misuse of land due to intensive crop management has deteriorated soil health and quality. A huge plethora of microorganisms inhabits soils, thus acting as “the biological engine of the earth”; indeed, this microbiota serves the soil ecosystem, performing several fundamental functions. Therefore, management practices might be planned looking at the safeguard of soil microbial diversity and resilience. In addition, each unexpected alteration in numberless soil biochemical processes, being regulated by microbial communities, may represent an early and sensible signal of soil homeostasis weakening and, consequently, warn about soil conservation. Within the vast number of soil biochemical processes and connected features (bioindicators) virtually effective to measure the sustainable soil exploitation, those related to the mineralization or immobilization of the main nutrients (C and N), including enzyme activity (functioning) and composition (diversity) of microbial communities, exert a fundamental role because of their involvement in soil metabolism. Comparing the influence of many cropping factors (tillage, mulching and cover crops, rotations, mineral and organic fertilization) under both intensive and sustainable managements on soil microbial diversity and functioning, through both chemical and biological soil quality indicators, makes it possible to identify the most hazardous diversions from soil sustainability principles.

Article

Corn ranks first among crops in quantity produced globally, owing to its high yield and to its value as a food for humans and domestic animals. While its water-use efficiency is high compared to that of other crops, the production of high corn yields requires a great deal of water; the availability of water largely determines where the crop is grown. As a high-yielding grass species, corn also requires a substantial supply of nutrients (especially nitrogen) from external sources, including manufactured fertilizers and organic materials such as animal or green manures. This, along with the need to manage soils, weeds, insects, and diseases, makes corn production environmentally consequential. Corn captures large quantities of sunlight energy through photosynthesis, but its production requires large external inputs of energy, coming mostly (in mechanized production) from fossil fuels. So even though the crop’s high yields moderates the environmental cost per unit of grain produced, minimizing the external environmental consequences of large-scale corn production is an important goal in the quest for greater sustainability of production of this important crop.