1-3 of 3 Results

  • Keywords: simulation x
Clear all

Article

Bioeconomic Models  

Ihtiyor Bobojonov

Bioeconomic models are analytical tools that integrate biophysical and economic models. These models allow for analysis of the biological and economic changes caused by human activities. The biophysical and economic components of these models are developed based on historical observations or theoretical relations. Technically these models may have various levels of complexity in terms of equation systems considered in the model, modeling activities, and programming languages. Often, biophysical components of the models include crop or hydrological models. The core economic components of these models are optimization or simulation models established according to neoclassical economic theories. The models are often developed at farm, country, and global scales, and are used in various fields, including agriculture, fisheries, forestry, and environmental sectors. Bioeconomic models are commonly used in research on environmental externalities associated with policy reforms and technological modernization, including climate change impact analysis, and also explore the negative consequences of global warming. A large number of studies and reports on bioeconomic models exist, yet there is a lack of studies describing the multiple uses of these models across different disciplines.

Article

A Century of Evolution of Modeling for River Basin Planning to the Next Generation of Models, Methods, and Concepts  

Caroline Rosello, Sondoss Elsawah, Joseph Guillaume, and Anthony Jakeman

River Basin models to inform planning decisions have continued to evolve, largely based on predominant planning paradigms and progress in the sciences and technology. From the Industrial Revolution to the first quarter of the 21st century, such modeling tools have shifted from supporting water resources development to integrated and adaptive water resources management. To account for the increasing complexity and uncertainty associated with the relevant socioecological systems in which planning should be embedded, river basin models have shifted from a supply development focus during the 19th century to include, by thes 2000s–2020s, demand management approaches and all aspects of consumptive and non-consumptive uses, addressing sociocultural and environmental issues. With technological and scientific developments, the modeling has become increasingly quantitative, integrated and interdisciplinary, attempting to capture, more holistically, multiple river basin issues, relevant cross-sectoral policy influences, and disciplinary perspectives. Additionally, in acknowledging the conflicts around ecological degradation and human impacts associated with intensive water resource developments, the modeling has matured to embrace the need for adequate stakeholder engagement processes that support knowledge-sharing and trust-building and facilitate the appreciation of trade-offs across multiple types of impacts and associated uncertainties. River basin models are now evolving to anticipate uncertainty around plausible alternative futures such as climate change and rapid sociotechnical transformations. The associated modeling now embraces the challenge of shifting from predictive to exploratory tools to support learning and reflection and better inform adaptive management and planning. Managing so-called deep uncertainty presents new challenges for river basin modeling associated with imperfect knowledge, integrating sociotechnical scales, regime shifts and human factors, and enabling collaborative modeling, infrastructure support, and management systems.

Article

Addressing Climate Change Through Education  

Tamara Shapiro Ledley, Juliette Rooney-Varga, and Frank Niepold

The scientific community has made the urgent need to mitigate climate change clear and, with the ratification of the Paris Agreement under the United Nations Framework Convention on Climate Change, the international community has formally accepted ambitious mitigation goals. However, a wide gap remains between the aspirational emissions reduction goals of the Paris Agreement and the real-world pledges and actions of nations that are party to it. Closing that emissions gap can only be achieved if a similarly wide gap between scientific and societal understanding of climate change is also closed. Several fundamental aspects of climate change make clear both the need for education and the opportunity it offers. First, addressing climate change will require action at all levels of society, including individuals, organizations, businesses, local, state, and national governments, and international bodies. It cannot be addressed by a few individuals with privileged access to information, but rather requires transfer of knowledge, both intellectually and affectively, to decision-makers and their constituents at all levels. Second, education is needed because, in the case of climate change, learning from experience is learning too late. The delay between decisions that cause climate change and their full societal impact can range from decades to millennia. As a result, learning from education, rather than experience, is necessary to avoid those impacts. Climate change and sustainability represent complex, dynamic systems that demand a systems thinking approach. Systems thinking takes a holistic, long-term perspective that focuses on relationships between interacting parts, and how those relationships generate behavior over time. System dynamics includes formal mapping and modeling of systems, to improve understanding of the behavior of complex systems as well as how they respond to human or other interventions. Systems approaches are increasingly seen as critical to climate change education, as the human and natural systems involved in climate change epitomize a complex, dynamic problem that crosses disciplines and societal sectors. A systems thinking approach can also be used to examine the potential for education to serve as a vehicle for societal change. In particular, education can enable society to benefit from climate change science by transferring scientific knowledge across societal sectors. Education plays a central role in several processes that can accelerate social change and climate change mitigation. Effective climate change education increases the number of informed and engaged citizens, building social will or pressure to shape policy, and building a workforce for a low-carbon economy. Indeed, several climate change education efforts to date have delivered gains in climate and energy knowledge, affect, and/or motivation. However, society still faces challenges in coordinating initiatives across audiences, managing and leveraging resources, and making effective investments at a scale that is commensurate with the climate change challenge. Education is needed to promote informed decision-making at all levels of society.