1-6 of 6 Results

  • Keywords: soil loss x
Clear all

Article

Worldwide, governments subsidize agriculture at the rate of approximately 1 billion dollars per day. This figure rises to about twice that when export and biofuels production subsidies and state financing for dams and river basin engineering are included. These policies guide land use in numerous ways, including growers’ choices of crop and buyers’ demand for commodities. The three types of state subsidies that shape land use and the environment are land settlement programs, price and income supports, and energy and emissions initiatives. Together these subsidies have created perennial surpluses in global stores of cereal grains, cotton, and dairy, with production increases outstripping population growth. Subsidies to land settlement, to crop prices, and to processing and refining of cereals and fiber, therefore, can be shown to have independent and largely deleterious effect on soil fertility, fresh water supplies, biodiversity, and atmospheric carbon.

Article

Soil erosion by water is a natural process that cannot be avoided. Soil erosion depends on many factors, and a distinction should be made between humanly unchangeable (e.g., rainfall) and modifiable (e.g., length of the field) soil erosion factors. Soil erosion has both on-site and off-site effects. Soil conservation tries to combine modifiable factors so as to maintain erosion in an area of interest to an acceptable level. Strategies to control soil erosion have to be adapted to the desired land use. Knowledge of soil loss tolerance, T, i.e., the maximum admissible erosion from a given field, allows technicians or farmers to establish whether soil conservation practices need to be applied to a certain area or not. Accurate evaluation of the tolerable soil erosion level for an area of interest is crucial for choosing effective practices to mitigate this phenomenon. Excessively stringent standards for T would imply over expenditure of natural, financial, and labor resources. Excessively high T values may lead to excessive soil erosion and hence decline of soil fertility and productivity and to soil degradation. In this last case, less money is probably spent for soil conservation, but ineffectively. Basic principles to control erosion for different land uses include maintaining vegetative and ground cover, incorporating biomass into the soil, minimizing soil disturbance, increasing infiltration, and avoiding long field lengths. Preference is generally given to agronomic measures as compared with mechanical measures since the former ones reduce raindrop impact, increase infiltration, and reduce runoff volumes and water velocities. Agronomic measures for soil erosion control include choice of crops and crop rotation, applied tillage practices, and use of fertilizers and amendments. Mechanical measures include contour, ridging, and terracing. These measures cannot prevent detachment of soil particles, but they counter sediment transport downhill and can be unavoidable in certain circumstances, at least to supplement agronomic measures. Simple methods can be applied to approximately predict the effect of a given soil conservation measure on soil loss for an area of interest. In particular, the simplest way to quantitatively predict mitigation of soil erosion due to a particular conservation method makes use of the Universal Soil Loss Equation (USLE). Despite its empirical nature, this model still appears to represent the best compromise between reliability of the predictions and simplicity in terms of input data, which are generally very difficult to obtain for other soil erosion prediction models. Soil erosion must be controlled soon after burning.

Article

Field plots are often used to obtain experimental data (soil loss values corresponding to different climate, soil, topographic, crop, and management conditions) for predicting and evaluating soil erosion and sediment yield. Plots are used to study physical phenomena affecting soil detachment and transport, and their sizes are determined according to the experimental objectives and the type of data to be obtained. Studies on interrill erosion due to rainfall impact and overland flow need small plot width (2–3 m) and length (< 10 m), while studies on rill erosion require plot lengths greater than 6–13 m. Sites must be selected to represent the range of uniform slopes prevailing in the farming area under consideration. Plots equipped to study interrill and rill erosion, like those used for developing the Universal Soil Loss Equation (USLE), measure erosion from the top of a slope where runoff begins; they must be wide enough to minimize the edge or border effects and long enough to develop downslope rills. Experimental stations generally include bounded runoff plots of known rea, slope steepness, slope length, and soil type, from which both runoff and soil loss can be monitored. Once the boundaries defining the plot area are fixed, a collecting equipment must be used to catch the plot runoff. A conveyance system (H-flume or pipe) carries total runoff to a unit sampling the sediment and a storage system, such as a sequence of tanks, in which sediments are accumulated. Simple methods have been developed for estimating the mean sediment concentration of all runoff stored in a tank by using the vertical concentration profile measured on a side of the tank. When a large number of plots are equipped, the sampling of suspension and consequent oven-drying in the laboratory are highly time-consuming. For this purpose, a sampler that can extract a column of suspension, extending from the free surface to the bottom of the tank, can be used. For large plots, or where runoff volumes are high, a divisor that splits the flow into equal parts and passes one part in a storage tank as a sample can be used. Examples of these devices include the Geib multislot divisor and the Coshocton wheel. Specific equipment and procedures must be employed to detect the soil removed by rill and gully erosion. Because most of the soil organic matter is found close to the soil surface, erosion significantly decreases soil organic matter content. Several studies have demonstrated that the soil removed by erosion is 1.3–5 times richer in organic matter than the remaining soil. Soil organic matter facilitates the formation of soil aggregates, increases soil porosity, and improves soil structure, facilitating water infiltration. The removal of organic matter content can influence soil infiltration, soil structure, and soil erodibility.

Article

Beyond damage to rainfed agricultural and forestry ecosystems, soil erosion due to water affects surrounding environments. Large amounts of eroded soil are deposited in streams, lakes, and other ecosystems. The most costly off-site damages occur when eroded particles, transported along the hillslopes of a basin, arrive at the river network or are deposited in lakes. The negative effects of soil erosion include water pollution and siltation, organic matter loss, nutrient loss, and reduction in water storage capacity. Sediment deposition raises the bottom of waterways, making them more prone to overflowing and flooding. Sediments contaminate water ecosystems with soil particles and the fertilizer and pesticide chemicals they contain. Siltation of reservoirs and dams reduces water storage, increases the maintenance cost of dams, and shortens the lifetime of reservoirs. Sediment yield is the quantity of transported sediments, in a given time interval, from eroding sources through the hillslopes and river network to a basin outlet. Chemicals can also be transported together with the eroded sediments. Sediment deposition inside a reservoir reduces the water storage of a dam. The prediction of sediment yield can be carried out by coupling an erosion model with a mathematical operator which expresses the sediment transport efficiency of the hillslopes and the channel network. The sediment lag between sediment yield and erosion can be simply represented by the sediment delivery ratio, which can be calculated at the outlet of the considered basin, or by using a distributed approach. The former procedure couples the evaluation of basin soil loss with an estimate of the sediment delivery ratio SDRW for the whole watershed. The latter procedure requires that the watershed be discretized into morphological units, areas having a constant steepness and a clearly defined length, for which the corresponding sediment delivery ratio is calculated. When rainfall reaches the surface horizon of the soil, some pollutants are desorbed and go into solution while others remain adsorbed and move with soil particles. The spatial distribution of the loading of nitrogen, phosphorous, and total organic carbon can be deduced using the spatial distribution of sediment yield and the pollutant content measured on soil samples. The enrichment concept is applied to clay, organic matter, and all pollutants adsorbed by soil particles, such as nitrogen and phosphorous. Knowledge of both the rate and pattern of sediment deposition in a reservoir is required to establish the remedial strategies which may be practicable. Repeated reservoir capacity surveys are used to determine the total volume occupied by sediment, the sedimentation pattern, and the shift in the stage-area and stage-storage curves. By converting the sedimentation volume to sediment mass, on the basis of estimated or measured bulk density, and correcting for trap efficiency, the sediment yield from the basin can be computed.

Article

Gary R. Sands, Srinivasulu Ale, Laura E. Christianson, and Nathan Utt

Agricultural (tile) drainage enables agricultural production on millions of hectares of arable lands worldwide. Lands where drainage or irrigation (and sometimes both) are implemented, generate a disproportionately large share of global agricultural production compared to dry land or rain-fed agricultural lands and thus, these water management tools are vital for meeting the food demands of today and the future. Future food demands will likely require irrigation and drainage to be practiced on an even greater share of the world’s agricultural lands. The practice of agricultural drainage finds its roots in ancient societies and has evolved greatly to incorporate modern technologies and materials, including the modern drainage plow, plastic drainage pipe and tubing, laser and GPS-guided installation equipment, and computer-aided design tools. Although drainage brings important agricultural production and environmental benefits to poorly drained and salt-affected arable lands, it can also give rise to the transport of nutrients and other constituents to downstream waters. Other unwanted ecological and hydrologic environmental effects may also be associated with the practice. The goal of this article is to familiarize the reader with the practice of subsurface agricultural drainage, the history and extent of its application, and the benefits commonly associated with it. In addition, environmental effects associated with subsurface drainage including hydrologic and water quality effects are presented, and conservation practices for mitigating these unwanted effects are described. These conservation practices are categorized by whether they are implemented in-field (such as controlled drainage) versus edge-of-field (such as bioreactors). The literature cited and reviewed herein is not meant to be exhaustive, but seminal and key literary works are identified where possible.

Article

Growing a cover crop between main crops imitates natural ecosystems where the soil is continuously covered with vegetation. This is an important management practice in preserving soil nutrient resources and reducing nitrogen (N) losses to waters. Cover crops also provide other functions that are important for the resilience and long-term stability of cropping systems, such as reduced erosion, increased soil fertility, carbon sequestration, increased soil phosphorus (P) availability, and suppression of weeds and pathogens. Much is known about how to use cover crops to reduce N leaching, for climates where there is a water surplus outside the growing season. Non-legume cover crops reduce N leaching by 20%–80% and legumes reduce it by, on average, 23%. There are both synergies and possible conflicts between different environmental and production aspects that should be considered when developing efficient and multifunctional cover crop systems, but contradictions about different functions provided by cover crops can sometimes be overcome with site-specific adaptation of measures. One example is cover crop effects on P losses. Cover crops reduce losses of total P, but extract soil P to available forms and may increase losses of dissolved P. How to use this effect to increase soil P availability on subtropical soils needs further studies. Knowledge and examples of how to maximize the positive effects of cover crops on cropping systems are improving, thereby increasing the sustainability of agriculture. One example is combined weed suppression in order to reduce dependence on herbicides or intensive mechanical treatment.