1-20 of 41 Results

  • Keywords: sustainability x
Clear all

Article

The challenges of integrated approaches and equity in water resources management have been well researched. However, a clear division exists between scholars working on equity and those working on integration, and there is remarkably little systematic analysis available that addresses their interlinkages. The divide between these two fields of inquiry has increased over time, and equity is assumed rather than explicitly considered in integrated approaches for water resources management. Historically, global debates on water resources management have focused on questions of distributional equity in canal irrigation systems and access to water. This limited focus on distributional equity was side-lined by neoliberal approaches and subsequent integrated approaches around water resources management tend to emphasize the synergistic aspects and ignore the political trade-offs between equity and efficiency. The interlinkages among equity, sustainability, and integration need deeper and broader interdisciplinary analysis and understanding, as well as new concepts, approaches, and agendas that are better suited to the intertwined complexity of resource degradation.

Article

David E. Clay, Sharon A. Clay, Thomas DeSutter, and Cheryl Reese

Since the discovery that food security could be improved by pushing seeds into the soil and later harvesting a desirable crop, agriculture and agronomy have gone through cycles of discovery, implementation, and innovation. Discoveries have produced predicted and unpredicted impacts on the production and consumption of locally produced foods. Changes in technology, such as the development of the self-cleaning steel plow in the 18th century, provided a critical tool needed to cultivate and seed annual crops in the Great Plains of North America. However, plowing the Great Plains would not have been possible without the domestication of plants and animals and the discovery of the yoke and harness. Associated with plowing the prairies were extensive soil nutrient mining, a rapid loss of soil carbon, and increased wind and water erosion. More recently, the development of genetically modified organisms (GMOs) and no-tillage planters has contributed to increased adoption of conservation tillage, which is less damaging to the soil. In the future, the ultimate impact of climate change on agronomic practices in the North American Great Plains is unknown. However, projected increasing temperatures and decreased rainfall in the southern Great Plains (SGP) will likely reduce agricultural productivity. Different results are likely in the northern Great Plains (NGP) where higher temperatures can lead to increased agricultural intensification, the conversion of grassland to cropland, increased wildlife fragmentation, and increased soil erosion. Precision farming, conservation, cover crops, and the creation of plants better designed to their local environment can help mitigate these effects. However, changing practices require that farmers and their advisers understand the limitations of the soils, plants, and environment, and their production systems. Failure to implement appropriate management practices can result in a rapid decline in soil productivity, diminished water quality, and reduced wildlife habitat.

Article

Carl Folke

Resilience thinking in relation to the environment has emerged as a lens of inquiry that serves a platform for interdisciplinary dialogue and collaboration. Resilience is about cultivating the capacity to sustain development in the face of expected and surprising change and diverse pathways of development and potential thresholds between them. The evolution of resilience thinking is coupled to social-ecological systems and a truly intertwined human-environment planet. Resilience as persistence, adaptability and, transformability of complex adaptive social-ecological systems is the focus, clarifying the dynamic and forward-looking nature of the concept. Resilience thinking emphasizes that social-ecological systems, from the individual, to community, to society as a whole, are embedded in the biosphere. The biosphere connection is an essential observation if sustainability is to be taken seriously. In the continuous advancement of resilience thinking there are efforts aimed at capturing resilience of social-ecological systems and finding ways for people and institutions to govern social-ecological dynamics for improved human well-being, at the local, across levels and scales, to the global. Consequently, in resilience thinking, development issues for human well-being, for people and planet, are framed in a context of understanding and governing complex social-ecological dynamics for sustainability as part of a dynamic biosphere.

Article

Center-pivot irrigation systems started in the United States in the mid-20th century as an irrigation method which surpassed the traditional surface irrigation methods. At that time, they had the potential to bring about higher irrigation efficiencies with less water consumption although their requirements in energy were higher too. Among their benefits, it is highlighted the feasibility to control water management as well as the application of agro-chemicals dissolved in the irrigation water and thus, center-pivot irrigation systems have spread worldwide. Nevertheless, since the last decade of the 20th century, they are facing actual concerns regarding ecosystem sustainability and water and energy efficiencies. Likewise, the 21st century has brought about the cutting edge issue “precision irrigation” which has made feasible the application of water, fertilizers, and chemicals as the plant demands taking into account variables such as: sprinkler´s pressure, terrain topography, soil variability, and climatic conditions. Likewise, it could be adopted to deal with the current key issues regarding the sustainability and efficiency of the center-pivot irrigation to maintain the agro-ecosystems but still, other issues such as the organic matter incorporation are far to be understood and they will need further studies.

Article

Giles Jackson

Ecotourism is responsible travel to natural areas that educates and inspires through interpretation—increasingly paired with practical action—that helps conserve the environment and sustain the well-being of local people. Ecotourism is the fastest-growing segment of the travel and tourism industry, and its economic value is projected to exceed USD$100 billion by 2027. Ecotourism emerged in the 1960s as a response to the destructive effects of mass tourism and has been embraced by an increasing number of governments, especially in the developing world, as a vehicle for achieving the UN Sustainable Development Goals. As an emerging, interdisciplinary field of study, ecotourism has reached a critical inflection point, as scholars reflect on the achievements and shortcomings of several decades of research and set out the research agenda for decades to come. The field has yet to achieve consensus on the most basic questions, such as how ecotourism is, or should be, defined; what makes it different from nature-based and related forms of tourism; and what factors ultimately determine the success or failure of ecotourism as a vehicle for sustainable development. This lack of consensus stems in part from the different perspectives and agendas within and between the academic, policy, and industry communities. Because it is based on measured and observed phenomena, empirical research has a critical role to play in advancing the theory and practice of ecotourism. However, scholars also recognize that to fulfill this role, methodologies must evolve to become more longitudinal, scalable, inclusive, integrative, and actionable.

Article

Kimberly S. Hodge, Jane Stewart, and Lilly Grella

Can sustainability initiatives support positive economics, or are they necessarily cost-additive? With thousands of colleges and universities across the globe actively pursuing sustainability and carbon-neutrality goals, the question of how to balance institutional sustainability priorities and fiscal responsibility hovers in discussions ranging from utility planning to student programming. Educational institutions often heavily weigh the economics and academics of a potential sustainability project. However, pressing issues with long-term implications, such as climate change and rising operations costs, can make campus sustainability projects an appealing option. Institutions will incorporate the environmental, financial, and social aspects of a decision differently and through different avenues of funding. Examples of measures that institutions of higher education are taking to incorporate sustainability include adaptations of campus infrastructure, operations, and administrative leadership, and those measures necessarily intersect with financial planning and outcomes. An overview of general models and specific institutional examples of sustainability initiatives in the areas of infrastructure, operations and management, education and community engagement, and administration indicate that sustainability measures, especially for environmental sustainability, can contribute to positive campus economics. This outcome, however, is most likely when decision-making considers both long-term and cross-sectoral impacts to evaluate the true cost–benefit profile as it applies to the institution as a whole.

Article

The Genuine Progress Indicator (GPI) is an interesting alternative to Gross Domestic Product (GDP) as an indicator of society’s development. Historically, GDP has been used by policymakers, media analysts, and economists as the main indicator of development, even though economics textbooks often state that it is not a measure of social welfare. Strictly speaking, GDP is only an indicator of the production of economic goods and services, not an index of well-being or development. It does not include the environmental, social, or economic costs of producing goods and services. The theoretical basis of GDP is conventional macroeconomics, which adopts an isolated economic system as the object of analysis. In this approach, there is no flow of matter and energy to produce economic goods and services. The economy is considered a perpetual motion machine that does not need material and energy to produce and which consequently does not generate waste. However, the economy is a subsystem open to the flow of matter and energy, supported by a closed, natural subsystem—the global environmental system. In practice, the production of economic goods and services is dependent on the continuous flow of matter and energy from the environment, and inherently, the result of GDP is also the generation of waste. The GPI adopts this perspective. In the 1990s, Daly and Cobb created the Index of Sustainable Economic Welfare (ISEW), hereafter termed GPI. The objective was to incorporate environmental, social, and economic costs associated with GDP growth, and to generate an indicator that reflected a genuine development of society. The GPI has been estimated for several countries, including the United States, Australia, China, and Brazil. This indicator is neither perfect nor complete for assessing development or human well-being, but it is superior to GDP. Despite technological development, there has been an unequivocal increase in environmental degradation, contrary to the environmental Kuznets curve (EKC) hypothesis. The result of environmental degradation has been an increase in the environmental, social, and economic costs of GDP growth. However, these costs have been ignored by policymakers, companies, and society in their production and consumption decisions. Improving the GPI and its estimates can provide better information for decision making by economic and political agents.

Article

Sustainable development is the foundational principle for enhancing human and economic development while maintaining the functional integrity of ecological and social systems that support regional economies. Tourism has played a critical role in sustainable development in many countries and regions around the world. In developing countries, tourism development has been used as an important strategy for increasing economic growth, alleviating poverty, creating jobs, and improving food security. Many developing countries are in regions that are characterized by high levels of biological diversity, natural resources, and cultural heritage sites that attract international tourists whose local purchases generate income and support employment and economic development. Tourism has been associated with the principles of sustainable development because of its potential to support environmental protection and livelihoods. However, the relationship between tourism and the environment is multifaceted, as some types of tourism have been associated with negative environmental impacts, many of which are borne by host communities. The concept of sustainable tourism development emerged in contrast to mass tourism, which involves the participation of large numbers of people, often in structured or packaged tours. Mass tourism has been associated with economic leakage and dependence, along with negative environmental and social impacts. Sustainable tourism development has been promoted in various ways as a framing concept in contrast to these economic, environmental, and social impacts. Some literature has acknowledged a vagueness of the concept of sustainable tourism, which has been used to advocate for fundamentally different strategies for tourism development that may exacerbate existing conflicts between conservation and development paradigms. Tourism has played an important role in sustainable development in some countries through the development of alternative tourism models, including ecotourism, community-based tourism, pro-poor tourism, slow tourism, green tourism, and heritage tourism, among others that aim to enhance livelihoods, increase local economic growth, and provide for environmental protection. Although these models have been given significant attention among researchers, the extent of their implementation in tourism planning initiatives has been limited, superficial, or incomplete in many contexts. The sustainability of tourism as a global system is disputed among scholars. Tourism is dependent on travel, and nearly all forms of transportation require the use of non-renewable resources such as fossil fuels for energy. The burning of fossil fuels for transportation generates emissions of greenhouse gases that contribute to global climate change, which is fundamentally unsustainable. Tourism is also vulnerable to both localized and global shocks. Studies of the vulnerability of tourism to localized shocks include the impacts of natural disasters, disease outbreaks, and civil unrest. Studies of the vulnerability of tourism to global shocks include the impacts of climate change, economic crisis, global public health pandemics, oil price shocks, and acts of terrorism. It is clear that tourism has contributed significantly to economic development globally, but its role in sustainable development is uncertain, debatable, and potentially contradictory.

Article

Marcello Hernández-Blanco and Robert Costanza

“The Anthropocene” has been proposed as the new geological epoch in which we now live. We have left behind the Holocene, an epoch of stable climate conditions that permitted the development of human civilization. To address the challenges of this new epoch, humanity needs to take an active role as stewards of the integrated Earth System, collaborating across scales and levels with a shared vision and values toward maintaining the planet within a safe and just operating space. In September 2015, the United Nations adopted the 2030 Agenda for Sustainable Development, which has at its core 17 Sustainable Development Goals (SDGs). These goals built on and superseded the Millennium Development Goals (MDGs). Unlike the MDGs, they apply to all countries and represent universal goals and targets that articulate the need and opportunity for the global community to build a sustainable and desirable future in an increasingly interconnected world. The global health crisis caused by COVID-19 has been a strong hit to a vulnerable development system, exacerbating many of the challenges that humanity faces in the Anthropocene. The pandemic has touched all segments of the global populations and all sectors of the economy, with the world’s poorest and most vulnerable people the most affected. Understanding the interdependence between SDGs is a key area of research and policy, which will require novel approaches to assess and implement systemic global strategies to achieve the 2030 agenda. Global society requires a new vision of the economy, one in which the economy is recognized to be a subsystem of the broader Earth System (a single complex system with reasonably well-defined states and transitions between them), instead of viewing nature as just another source of resources and sink for wastes. This approach will require acknowledging the value of nature, which, although it has been widely recognized in the scientific literature, has been often ignored by decision-makers. Therefore, there is a need to replace the static, linear model of gross domestic product (GDP) with more dynamic, integrated, natural, and human system models that incorporate the dynamics of stocks, flows, trade-offs, and synergies among the full range of variables that affect the SDGs and human and ecosystem well-being. The SDGs will only be achieved if humanity chooses a development path focused on thriving in a broad and integrated way, rather than growing material consumption at all costs. Achieving the SDGs is a future where society reconnects with the rest of nature and develops within its planetary boundaries. The new economics and the visions and strategies are aimed at achieving these shared global goals.

Article

Juha Helenius, Alexander Wezel, and Charles A. Francis

Agroecology can be defined as scientific research on ecological sustainability of food systems. In addressing food production and consumption systems in their entirety, the focus of agroecology is on interactions and processes that are relevant for transitioning and maintaining ecological, economic, political, and social-cultural sustainability. As a field of sustainability science, agroecology explores agriculture and food with explicit linkages to two other widespread interpretations of the concept of agroecology: environmentally sound farming practices and social movements for food security and food sovereignty. In the study of agroecology as science, both farming practices and social movements emerge as integrated components of agroecological research and development. In the context of agroecology, the concept of ecology refers not only to the science of ecology as biological research but also to environmental and social sciences with research on social systems as integrated social and ecological systems. In agroecological theory, all these three are merged so that agroecology can broadly be defined as “human food ecology” or “the ecology of food systems.” Since the last decades of the 20th century many developments have led to an increased emphasis on agroecology in universities, nonprofit organizations, movements, government programs, and the United Nations. All of these have raised a growing attention to ecological, environmental, and social dimensions of farming and food, and to the question of how to make the transition to sustainable farming and food systems. One part of the foundation of agroecology was built during the 1960s when ecologically oriented environmental research on agriculture emerged as the era of optimism about component research began to erode. Largely, this took place as a reaction to unexpected and unwanted ecological and social consequences of the Green Revolution, a post–World War II scaling-up, chemicalization, and mechanization of agriculture. Another part of the foundation was a nongovernmental movement among thoughtful farmers wanting to develop sustainable and more ecological/organic ways of production and the demand by consumers for such food products. Finally, a greater societal acceptance, demand for research and education, and public funding for not only environmental ecology but also for wider sustainability in food and agriculture was ignited by an almost sudden high-level political awakening to the need for sustainable development by the end of 1980s. Agroecology as science evolved from early studies on agricultural ecosystems, from research agendas for environmentally sound farming practices, and from concerns about addressing wider sustainability; all these shared several forms of systems thinking. In universities and research institutions, agroecologists most often work in faculties of food and agriculture. They share resources and projects among scientists having disciplinary backgrounds in genetics (breeding of plants and animals), physiology (crop science, animal husbandry, human nutrition), microbiology or entomology (crop protection), chemistry and physics (soil science, agricultural and food chemistry, agricultural and food technology), economics (of agriculture and food systems), marketing, behavioral sciences (consumer studies), and policy research (agricultural and food policy). While agroecologists clearly have a mandate to address ecology of farmland, its biodiversity, and ecosystem services, one of the greatest added values from agroecology in research communities comes from its wider systems approach. Agroecologists complement reductionist research programs where scientists seek more detailed understanding of detail and mechanisms and put these into context by developing a broader appreciation of the whole. Those in agroecology integrate results from disciplinary research and increase relevance and adoption by introducing transdisciplinarity, co-creation of information and practices, together with other actors in the system. Agroecology is the field in sustainability science that is devoted to food system transformation and resilience. Agroecology uses the concept of “agroecosystem” in broad ecological and social terms and uses these at multiple scales, from fields to farms to farming landscapes and regions. Food systems depend on functioning agroecosystems as one of their subsystems, and all the subsystems of a food system interact through positive and negative feedbacks, in their complex biophysical, sociocultural, and economic dimensions. In embracing wholeness and connectivity, proponents of agroecology focus on the uniqueness of each place and food system, as well as solutions appropriate to their resources and constraints.

Article

Renewable energy was used exclusively by the first humans and is likely to be the predominant source for future humans. Between these times the use of extracted resources such as coal, oil, and natural gas has created an explosion of population and affluence, but also of pollution and dependency. This article explores the advent of energy sources in a broad social context including economics, finance, and policy. The means of producing renewable energy are described in an accessible way, highlighting the broad range of considerations in their development, deployment, and ability to scale to address the entirety of human enterprises.

Article

The ancient Near East was one of the earliest centers of agriculture in the world, giving rise to domesticated herd animals, cereals, and legumes that today have become primary agricultural staples worldwide. Although much attention has been paid to the origins of agriculture, identifying when, where, and how plants and animals were domesticated, equally important are the social and environmental consequences of agriculture. Shortly after the advent of domestication, agricultural economies quickly replaced hunting and gathering across Mesopotamia, the Levant, and Anatolia. The social and environmental context of this transition has profound implications for understanding the rise of social complexity and incipient urbanism in the Near East. Economic transformation accompanied the expansion of agriculture throughout small-scale societies of the Near East. These farmsteads and villages, as well as mobile pastoral groups, formed the backbone of agricultural production, which enabled tradable surpluses necessary for more expansive, community-scale economic networks. The role of such economies in the development of social complexity remains debated, but they did play an essential role in the rise of urbanism. Cities depended on agricultural specialists, including farmers and herders, to feed urban populations and to enable craft and ritual specializations that became manifest in the first cities of southern Mesopotamia. The environmental implications of these agricultural systems in the Mesopotamian lowlands, especially soil salinization, were equally substantial. The environmental implications of Mesopotamian agriculture are distinct from those accompanying the spread of agriculture to the Levant and Anatolia, where deforestation, erosion, and loss of biodiversity can be identified as the hallmarks of agricultural expansion. Agriculture is intimately connected with the rise of territorial empires across the Near East. Such empires often controlled agricultural production closely, for both economic and strategic ends, but the methods by which they encouraged the production of specific agricultural products and the adoption of particular agricultural strategies, especially irrigation, varied considerably between empires. By combining written records, archaeological data from surveys and excavation, and paleoenvironmental reconstruction, together with the study of plant and animal remains from archaeological sites occupied during multiple imperial periods, it is possible to reconstruct the environmental consequences of imperial agricultural systems across the Near East. Divergent environmental histories across space and time allow us to assess the sustainability of the agricultural policies of each empire and to consider how resulting environmental change contributed to the success or failure of those polities.

Article

Paolo Socci, Alessandro Errico, Giulio Castelli, Daniele Penna, and Federico Preti

Agricultural terraces are widely spread all over the world and are among the most evident landscape signatures of the human fingerprint, in many cases dating back to several centuries. Agricultural terraces create complex anthropogenic landscapes traditionally built to obtain land for cultivation in steep terrains, typically prone to runoff production and soil erosion, and thus hardly suitable for rain-fed farming practices. In addition to acquiring new land for cultivation, terracing can provide a wide array of ecosystem services, including runoff reduction, water conservation, erosion control, soil conservation and increase of soil quality, carbon sequestration, enhancement of biodiversity, enhancement of soil fertility and land productivity, increase of crop yield and food security, development of aesthetic landscapes and recreational options. Moreover, some terraced areas in the world can be considered as a cultural and historical heritage that increases the asset of the local landscape. Terraced slopes may be prone to failure and degradation issues, such as localized erosion, wall or riser collapse, piping, and landsliding, mainly related to runoff concentration processes. Degradation phenomena, which are exacerbated by progressive land abandonment, reduce the efficiency of benefits provided by terraces. Therefore, understanding the physical processes occurring in terraced slopes is essential to find the most effective maintenance criteria necessary to accurately and adequately preserve agricultural terraces worldwide.

Article

Roger L. Burritt, Stefan Schaltegger, and Katherine L. Christ

There is a need to achieve sustainability through development of economies and companies that operate in the safe operating space of planetary boundaries and contribute to achieving the United Nations Sustainable Development Goals. This requires that decision makers are informed about the state of the natural environment, the environmental impacts being caused, and the effectiveness of improvement measures. Environmental accounting focuses on such environmental issues. It informs decision makers about combined environmental and economic matters and supports improvement processes. Environmental accounts at the national and regional macro level are mostly focused on the environmental condition and changes in condition over time. In contrast, company environmental accounting at the micro level either focuses on reporting on the overall impact in the past, providing detailed internal information for managers to address key problem areas, or identifying aspects for improvement. Transdisciplinary research helps to address the economic and management challenge of linking company-related micro level accounts and activities with macro level environmental objectives.

Article

Rawshan Ara Begum and Sofia Ehsan

With rapid population growth and urbanization around the world, waste generation (solid, liquid, and gaseous) is increasing. Waste management is a critical factor in ensuring human health and environmental protection, which is a major concern of both developing and developed countries. Waste management systems and practices, including collection, transport, treatment, and disposal, vary between developed and developing countries or even in urban and rural areas. In response, economic models have been developed to help decision-makers choose the most efficient mix of policy levers to regulate solid waste and recycling activities. The economic models employ different kinds of data to estimate the factors that contribute to solid waste generation and recycling, and to estimate the effectiveness of the policy options employed for waste management and disposal. Thus, economic analysis plays a crucial role in the proper and efficient management of solid waste, and leads to significant developments in the field of environmental economics to reflect the costs of pollution related to waste, measure the environmental benefits of waste management, find cost-efficient solutions, and shape policies for environmental protection and sustainable development. Economic assessment and cost-benefit analysis help to determine optimal policies for efficient use of resources and management of waste problems to achieve sustainable waste management, especially in developing and least developed countries. Crucial challenges include issues such as the limits of waste hierarchy, integration of sustainable waste management, public-private cooperation, and linear versus circular economy.

Article

Caroline A. Ochieng, Cathryn Tonne, Sotiris Vardoulakis, and Jan Semenza

Household air pollution from use of solid fuels (biomass fuels and coal) is a major problem in low and middle income countries, where 90% of the population relies on these fuels as the primary source of domestic energy. Use of solid fuels has multiple impacts, on individuals and households, and on the local and global environment. For individuals, the impact on health can be considerable, as household air pollution from solid fuel use has been associated with acute lower respiratory infections, chronic obstructive pulmonary disease, lung cancer, and other illnesses. Household-level impacts include the work, time, and high opportunity costs involved in biomass fuel collection and processing. Harvesting and burning biomass fuels affects local environments by contributing to deforestation and outdoor air pollution. At a global level, inefficient burning of solid fuels contributes to climate change. Improved biomass cookstoves have for a long time been considered the most feasible immediate intervention in resource-poor settings. Their ability to reduce exposure to household air pollution to levels that meet health standards is however questionable. In addition, adoption of improved cookstoves has been low, and there is limited evidence on how the barriers to adoption and use can be overcome. However, the issue of household air pollution in low and middle income countries has gained considerable attention in recent years, with a range of international initiatives in place to address it. These initiatives could enable a transition from biomass to cleaner fuels, but such a transition also requires an enabling policy environment, especially at the national level, and new modes of financing technology delivery. More research is also needed to guide policy and interventions, especially on exposure-response relationships with various health outcomes and on how to overcome poverty and other barriers to wide-scale transition from biomass fuels to cleaner forms of energy.

Article

Water is essential to life and development in terms of both quantity and quality. Water resources continue to face various pressures brought about by climate change, growing population, and increased economic demand for water. Managing this unique and precious resource has become a global challenge. The conflicts over water issues often arise not only among stakeholders facing limited water resources but also from social and political aspects of the design, operation, and management of water supply projects. A fair and sustainable system of sharing water resources, therefore, is one of the greatest challenges we face in the 21st century. In the absence of negotiation and lack of clear property rights, water is a source for human conflicts. Game theory as strategic analysis has provided powerful tools and been applied to many fields, including water resources management. The basic assumptions of game theory emphasize that rational players who pursue well-defined objectives and assume knowledge of others would accordingly form expectations of other decision makers’ behavior. Hence, game theory is used to predict agents’ behaviors toward fulfilling their own interests during the interactive decision-making process with other agents. Since the 1950s, game theory has become an important tool for analyzing important aspects of water resource management. Yet despite the rapid increase in the application of game theoretical approaches to water resource management, many challenges remain. The challenges of the early 21st century, including resource constraints, financial instability, inequalities within and between countries, and environmental degradation, present opportunities to address and reach resolutions on how water is governed and managed to ensure that everyone has sufficient access to water.

Article

Lydia Kallipoliti

The term ecological design was coined in a 1996 book by Sim van der Ryn and Stewart Cowan, in which the authors argued for a seamless integration of human activities with natural processes to minimize destructive environmental impact. Following their cautionary statements, William McDonough and Michael Braungart published in 2002 their manifesto book From Cradle to Cradle, which proposed a circular political economy to replace the linear logic of “cradle to grave.” These books have been foundational in architecture and design discussions on sustainability and establishing the technical dimension, as well as the logic, of efficiency, optimization, and evolutionary competition in environmental debates. From Cradle to Cradle evolved into a production model implemented by a number of companies, organizations, and governments around the world, and it also has become a registered trademark and a product certification. Popularized recently, these developments imply a very short history for the growing field of ecological design. However, their accounts hark as far back as Ernst Haeckel’s definition of the field of ecology in 1866 as an integral link between living organisms and their surroundings (Generelle Morphologie der Organismen, 1866); and Henry David Thoreau’s famous 1854 manual for self-reliance and living in proximity with natural surroundings, in the cabin that he built at Walden Pond, Massachusetts (Walden; or, Life in the Woods, 1854). Since World War II, contrary to the position of ecological design as a call to fit harmoniously within the natural world, there has been a growing interest in a form of synthetic naturalism, (Closed Worlds; The Rise and Fall of Dirty Physiology, 2015), where the laws of nature and metabolism are displaced from the domain of wilderness to the domain of cities, buildings, and objects. With the rising awareness of what John McHale called disturbances in the planetary reservoir (The Future of the Future, 1969), the field of ecological design has signified not only the integration of the designed object or space in the natural world, but also the reproduction of the natural world in design principles and tools through technological mediation. This idea of architecture and design producing nature paralleled what Buckminster Fuller, John McHale, and Ian McHarg, among others, referred to as world planning; that is, to understand ecological design as the design of the planet itself as much as the design of an object, building, or territory. Unlike van der Ryn and Cowan’s argumentation, which focused on a deep appreciation for nature’s equilibrium, ecological design might commence with the synthetic replication of natural systems. These conflicting positions reflect only a small fraction of the ubiquitous terms used to describe the field of ecological design, including green, sustain, alternative, resilient, self-sufficient, organic, and biotechnical. In the context of this study, this paper will argue that ecological design starts with the reconceptualization of the world as a complex system of flows rather than a discrete compilation of objects, which visual artist and theorist György Kepes has described as one of the fundamental reorientations of the 20th century (Art and Ecological Consciousness, 1972).

Article

Deltas have played a significant role in the growth of human civilization because of their unique economic and ecological importance. However, deltas are becoming increasingly vulnerable because of the impact of intensive human developmental activities, high population and urban growth, subsidence, climate change, and the associated rise in sea level. The trapping of sediments by dams is another major threat to the long-term stability and sustainability of deltas. The emergence and global acceptance of the concept of sustainable development in the 1980s led to the advent of several multidisciplinary and applied fields of research, including environmental science, environmental geology, and sustainability science. Environmental geology focuses on the application of geologic knowledge and principles to broad-ranging environmental and socioeconomic issues, including the specific problems confronting deltas. The key environmental geologic challenges in deltas (especially urban delta areas) are: increasing exposure and vulnerability to geologic hazards (flooding, cyclones, etc.), rise in sea level, decreasing sediment load supply, contamination of soil and water resources, provision of adequate drinking water, and safe waste disposal. The application of geologic knowledge and principles to these challenges requires consideration of the critical geologic controls, such as the geological history, stratigraphy, depositional environment, and the properties of the alluvial sediments. Until recently, most of the traditional engineered solutions in the management of deltas were designed to keep out water (fighting nature), typically without adequate geological/hydrological input, rather than building with nature. Recent innovative approaches to delta management involve a paradigm shift from the traditional approach to a more integrated, holistic, adaptive, and ecologically based philosophy that incorporates some critical geological and hydrological perspectives, for instance, widening and deepening rivers and flood plains as well as constructing secondary channels (i.e., making more room for water). A key challenge, however, is the establishment of a close and functional communication between environmental geologists and all other stakeholders involved in delta management. In addition, there is growing global consensus regarding the need for international cooperation that cuts across disciplines, sectors, and regions in addressing the challenges facing deltas. Integrating good policy and governance is also essential.

Article

Saket Pande, Mahendran Roobavannan, Jaya Kandasamy, Murugesu Sivapalan, Daniel Hombing, Haoyang Lyu, and Luuk Rietveld

Water quantity and quality crises are emerging everywhere, and other crises of a similar nature are emerging at several locations. In spite of a long history of investing in sustainable solutions for environmental preservation and improved water supply, these phenomena continue to emerge, with serious economic consequences. Water footprint studies have found it hard to change culture, that is, values, beliefs, and norms, about water use in economic production. Consumption of water-intensive products such as livestock is seen as one main reason behind our degrading environment. Culture of water use is indeed one key challenge to water resource economics and development. Based on a review of socio-hydrology and of societies going all the way back to ancient civilizations, a narrative is developed to argue that population growth, migration, technology, and institutions characterize co-evolution in any water-dependent society (i.e., a society in a water-stressed environment). Culture is proposed as an emergent property of such dynamics, with institutions being the substance of culture. Inclusive institutions, strong diversified economies, and resilient societies go hand in hand and emerge alongside the culture of water use. Inclusive institutions, in contrast to extractive institutions, are the ones where no small group of agents is able to extract all the surplus from available resources at the cost of many. Just as values and norms are informed by changing conditions resulting from population and economic growth and climate, so too are economic, technological, and institutional changes shaped by prevailing culture. However, these feedbacks occur at different scales—cultural change being slower than economic development, often leading to “lock-ins” of decisions that are conditioned by prevailing culture. Evidence-based arguments are presented, which suggest that any attempt at water policy that ignores the key role that culture plays will struggle to be effective. In other words, interventions that are sustainable endogenize culture. For example, changing water policy, for example, by taking water away from agriculture and transferring it to the environment, at a time when an economy is not diversified enough to facilitate the needed change in culture, will backfire. Although the economic models (and policy based on them) are powerful in predicting actions, that is, how people make choices based on how humans value one good versus the other, they offer little on how preferences may change over time. The conceptualization of the dynamic role of values and norms remains weak. The socio-hydrological perspective emphasizes the need to acknowledge the often-ignored, central role of endogenous culture in water resource economics and development.