1-3 of 3 Results

  • Keywords: water stress x
Clear all

Article

Claudia Sadoff, David Grey, and Edoardo Borgomeo

Water security has emerged in the 21st century as a powerful construct to frame the water objectives and goals of human society and to support and guide local to global water policy and management. Water security can be described as the fundamental societal goal of water policy and management. This article reviews the concept of water security, explaining the differences between water security and other approaches used to conceptualize the water-related challenges facing society and ecosystems and describing some of the actions needed to achieve water security. Achieving water security requires addressing two fundamental challenges at all scales: enhancing water’s productive contributions to human and ecosystems’ well-being, livelihoods and development, and minimizing water’s destructive impacts on societies, economies, and ecosystems resulting, for example, from too much (flood), too little (drought) or poor quality (polluted) water.

Article

Paolo Inglese and Giuseppe Sortino

In May, every year since 1857, in the great park of Sans-Souci in Potsdam just outside Berlin—a park begun in 1745 by Emperor Frederick II of Hohenzollern and expanded a century later by Frederick William IV—the doors of the great Orangerie open in and a Renaissance-style garden called Sizilianischer Garten is set up. On horse-drawn carriages, large olive and citrus trees are brought outdoors, and are then raised in masters. For the young European who, in the second half of the 18th century and in the first decades of the following, traveled to Italy to see and study Renaissance culture and the remains of Greek civilization, the citrus species and fruits and groves of southern Italy became the ultimate symbol of beauty and a sort of status symbol of wealth, particularly that of landowners. Nothing is more expressive of the fascination of their fruit than Abu-l-Hasan Ali’s 12th-century writings: “Come on, enjoy your harvested orange: happiness is present when it is present. / Welcome the cheeks of the branches, and welcome the stars of the trees! / It seems that the sky has lavished gold and that the earth has formed some shiny spheres.” Indeed, Citrus spp. are among the most important crops and consumed fruit worldwide. Their co-evolution due to a millennial agricultural utilization resulted in a complexity of species and cultivated varieties derived by natural or induced mutations, crossing and breeding the “original” species (Citrus medica, Citrus maxima, Citrus reticulate, Fortunella japonica) and their main progenies (C. aurantium, C. sinensis, Citrus limon, Citrus paradisi, Citrus clementina, etc.). Citrus spread from the original tropical and subtropical regions of southeast Asia toward the Mediterranean countries of Europe and North Africa and, after 1492, in the Americas, not to mention South Africa and Australia, where they still have a very important role. Citrus species, wherever they have been cultivated, quickly became the protagonists of the letters and the arts, as well as the markets and gastronomy, and can even be found in religious ceremonies, such as for Feast of Tabernacles (Sukkot). Studies on Citrus botany, cultivation, and utilization have been pursued since the early stages of the fruit’s domestication and grew following their introduction in Europe, the Americas, Africa, and Australia. Citrus research involves many different aspects: such as the study of citrus origin and botanical classification; citrus growing, propagation, and orchard management; citrus fruit quality, utilization and industry; citrus gardening and ornamentals; citrus in arts and manufacturing.

Article

Margarete Kalin, William N. Wheeler, Michael P. Sudbury, and Bryn Harris

The first treatise on mining and extractive metallurgy, published by Georgius Agricola in 1556, was also the first to highlight the destructive environmental side effects of mining and metals extraction, namely dead fish and poisoned water. These effects, unfortunately, are still with us. Since 1556, mining methods, knowledge of metal extraction, and chemical and microbial processes leading to the environmental deterioration have grown tremendously. Man’s insatiable appetite for metals and energy has resulted in mines vastly larger than those envisioned in 1556, compounding the deterioration. The annual amount of mined ore and waste rock is estimated to be 20 billion tons, covering 1,000 km2. The industry also annually consumes 80 km3 of freshwater, which becomes contaminated. Since metals are essential in modern society, cost-effective, sustainable remediation measures need to be developed. Engineered covers and dams enclose wastes and slow the weathering process, but, with time, become permeable. Neutralization of acid mine drainage produces metal-laden sludges that, in time, release the metals again. These measures are stopgaps at best, and are not sustainable. Focus should be on inhibiting or reducing the weathering rate, recycling, and curtailing water usage. The extraction of only the principal economic mineral or metal generally drives the economics, with scant attention being paid to other potential commodities contained in the deposit. Technology exists for recovering more valuable products and enhancing the project economics, resulting in a reduction of wastes and water consumption of up to 80% compared to “conventional processing.” Implementation of such improvements requires a drastic change, a paradigm shift, in the way that the industry approaches metals extraction. Combining new extraction approaches, more efficient water usage, and ecological engineering methods to deal with wastes will increase the sustainability of the industry and reduce the pressure on water and land resources. From an ecological perspective, waste rock and tailings need to be thought of as primitive ecosystems. These habitats are populated by heat-, acid- and saline-loving microbes (extremophiles). Ecological engineering utilizes geomicrobiological, physical, and chemical processes to change the mineral surface to encourage biofilm growth (the microbial growth form) within wastes by enhancing the growth of oxygen-consuming microbes. This reduces oxygen available for oxidation, leading to improved drainage quality. At the water–sediment interface, microbes assist in the neutralization of acid water (Acid Reduction Using Microbiology). To remove metals from the waste water column, indigenous biota are promoted (Biological Polishing) with inorganic particulate matter as flocculation agents. This ecological approach generates organic matter, which upon death settles with the adsorbed metals to the sediment. Once the metals reach the deeper, reducing zones of the sediments, microbial biomineralization processes convert the metals to relatively stable secondary minerals, forming biogenic ores for future generations. The mining industry has developed and thrived in an age when resources, space, and water appeared limitless. With the widely accepted rise of the Anthropocene global land and water shortages, the mining industry must become more sustainable. Not only is a paradigm shift in thinking needed, but also the will to implement such a shift is required for the future of the industry.