1-4 of 4 Results  for:

  • Keywords: ecosystem services x
  • Management and Planning x
Clear all

Article

Stephan Pauleit, Rieke Hansen, Emily Lorance Rall, Teresa Zölch, Erik Andersson, Ana Catarina Luz, Luca Szaraz, Ivan Tosics, and Kati Vierikko

Urban green infrastructure (GI) has been promoted as an approach to respond to major urban environmental and social challenges such as reducing the ecological footprint, improving human health and well-being, and adapting to climate change. Various definitions of GI have been proposed since its emergence more than two decades ago. This article aims to provide an overview of the concept of GI as a strategic planning approach that is based on certain principles. A variety of green space types exist in urban areas, including remnants of natural areas, farmland on the fringe, designed green spaces, and derelict land where successional vegetation has established itself. These green spaces, and especially components such as trees, can cover significant proportions of urban areas. However, their uneven distribution raises issues of social and environmental justice. Moreover, the diverse range of public, institutional, and private landowners of urban green spaces poses particular challenges to GI planning. Urban GI planning must consider processes of urban change, especially pressures on green spaces from urban sprawl and infill development, while derelict land may offer opportunities for creating new, biodiverse green spaces within densely built areas. Based on ample evidence from the research literature, it is suggested that urban GI planning can make a major contribution to conserving and enhancing biodiversity, improving environmental quality and reducing the ecological footprint, adapting cities to climate change, and promoting social cohesion. In addition, GI planning may support the shift toward a green economy. The benefits derived from urban green spaces via the provision of ecosystem services are key to meeting these challenges. The text argues that urban GI planning should build on seven principles to unlock its full potential. Four of these are treated in more detail: green-gray integration, multifunctionality, connectivity, and socially inclusive planning. Considering these principles in concert is what makes GI planning a distinct planning approach. Results from a major European research project indicate that the principles of urban GI planning have been applied to different degrees. In particular, green-gray integration and approaches to socially inclusive planning offer scope for further improvement In conclusion, urban GI is considered to hold much potential for the transition toward more sustainable and resilient pathways of urban development. While the approach has developed in the context of the Western world, its application to the rapidly developing cities of the Global South should be a priority.

Article

Leon C. Braat

The concept of ecosystem services considers the usefulness of nature for human society. The economic importance of nature was described and analyzed in the 18th century, but the term ecosystem services was introduced only in 1981. Since then it has spurred an increasing number of academic publications, international research projects, and policy studies. Now a subject of intense debate in the global scientific community, from the natural to social science domains, it is also used, developed, and customized in policy arenas and considered, if in a still somewhat skeptical and apprehensive way, in the “practice” domain—by nature management agencies, farmers, foresters, and corporate business. This process of bridging evident gaps between ecology and economics, and between nature conservation and economic development, has also been felt in the political arena, including in the United Nations and the European Union (which have placed it at the center of their nature conservation and sustainable use strategies). The concept involves the utilitarian framing of those functions of nature that are used by humans and considered beneficial to society as economic and social services. In this light, for example, the disappearance of biodiversity directly affects ecosystem functions that underpin critical services for human well-being. More generally, the concept can be defined in this manner: Ecosystem services are the direct and indirect contributions of ecosystems, in interaction with contributions from human society, to human well-being. The concept underpins four major discussions: (1) Academic: the ecological versus the economic dimensions of the goods and services that flow from ecosystems to the human economy; the challenge of integrating concepts and models across this paradigmatic divide; (2) Social: the risks versus benefits of bringing the utilitarian argument into political debates about nature conservation (Are ecosystem services good or bad for biodiversity and vice versa?); (3) Policy and planning: how to value the benefits from natural capital and ecosystem services (Will this improve decision-making on topics ranging from poverty alleviation via subsidies to farmers to planning of grey with green infrastructure to combining economic growth with nature conservation?); and (4) Practice: Can revenue come from smart management and sustainable use of ecosystems? Are there markets to be discovered and can businesses be created? How do taxes figure in an ecosystem-based economy? The outcomes of these discussions will both help to shape policy and planning of economies at global, national, and regional scales and contribute to the long-term survival and well-being of humanity.

Article

Watersheds are physical regions from which all arriving water flows to a single exit point. The shared hydrology means that other biophysical systems are linked, typically with upper-gradient regions influencing lower-gradient ones. This situation frames the challenge of managing economic and other uses of watersheds both in terms of individual activities and their influence on other connected processes and activities. Economics provides concepts and methods that help managers with decision making in the complex physical, biological, and institutional environment of a watershed. Among the important concepts and methods that help characterize watershed processes are externalities, impacts of economic activity that fall upon individuals not party to the activity, and third parties, individuals impacted without consent. Public goods and common pool resources describe categories of things or processes that by their nature are not amenable to regular market transactions. Their regulation requires special consideration and alternative approaches to markets. Benefit-cost analysis and valuation are related methods that provide a means to compare alternative uses of the same system. Each is based on the normative argument that the best use provides the greatest net benefits to society. And intergenerational equity is a value orientation that argues for preservation of watershed processes for the benefit of future generations. The need for effective watershed management methods pushed 20th-century economists to adapt their discipline to the complexity of watersheds, from which emerged subdisciplines of natural resource economics, environmental economics, and ecological economics. The field is still evolving with a growing interest in data gathering through land-based low-cost data collection systems and remote sensing, and in emerging data analysis techniques to improve management decisions.

Article

Boreal countries are rich in forest resources, and for their area, they produce a disproportionally large share of the lumber, pulp, and paper bound for the global market. These countries have long-standing strong traditions in forestry education and institutions, as well as in timber-oriented forest management. However, global change, together with evolving societal values and demands, are challenging traditional forest management approaches. In particular, plantation-type management, where wood is harvested with short cutting cycles relative to the natural time span of stand development, has been criticized. Such management practices create landscapes composed of mosaics of young, even-aged, and structurally homogeneous stands, with scarcity of old trees and deadwood. In contrast, natural forest landscapes are characterized by the presence of old large trees, uneven-aged stand structures, abundant deadwood, and high overall structural diversity. The differences between managed and unmanaged forests result from the fundamental differences in the disturbance regimes of managed versus unmanaged forests. Declines in managed forest biodiversity and structural complexity, combined with rapidly changing climatic conditions, pose a risk to forest health, and hence, to the long-term maintenance of biodiversity and provisioning of important ecosystem goods and services. The application of ecosystem management in boreal forestry calls for a transition from plantation-type forestry toward more diversified management inspired by natural forest structure and dynamics.