1-11 of 11 Results  for:

  • Keywords: ecosystem services x
  • Environmental Economics x
Clear all

Article

Achilleas Vassilopoulos and Phoebe Koundouri

Water accounts for more than 70% of Earth’s surface, making marine ecosystems the largest and most important ecosystems of the planet. However, the fact that a large part of these ecosystems and their potential contribution to humans remains unexplored has rendered them unattractive for valuation exercises. On the contrary, coastal zones, , being the interface between the land, the sea, and human activities competing for space and resources, have been extensively studied with the objective of marine ecosystem services valuation. Examples of marine and coastal ecosystems are open oceans, coral reefs, deep seas, hydrothermal vents, abyssal plains, wetlands, rocky and sandy shores, mangroves, kelp forests, estuaries, salt marshes, and mudflats. Although there are arguments that no classification can capture the ways in which ecosystems contribute to human well-being and support human life, very often policymakers have to decide upon alternative uses of such natural environments. Should a given wetland be preserved or converted to agricultural land? Should a mangrove be designated within the protected areas system or be used for shrimp farming? To answer these questions, one needs first to establish the philosophical basis of value within the ecosystems framework. To this end, two vastly different approaches have been proposed. On the one hand, the nonutilitarian (biocentric) approach relies on the notion of intrinsic value attached to the mere existence of a natural resource, independent of whether humans derive utility from its use (if any) or preservation. Albeit useful in philosophical terms, this approach is still far from providing unambiguous and generally accepted inputs to the tangible problem of ecosystem valuation. The utilitarian (anthropocentric) perspective, on the other hand, assumes that natural environments have value to the extent that humans derive utility from placing such value. According to the total economic value (TEV) approach, this value can be divided into “use” and “nonuse.” Use values involve some interaction with the resource, either directly or indirectly, while nonuse values are derived simply from the knowledge that natural resources and aspects of the natural environment are maintained. Existence and altruistic values fall within this latter category. Not surprisingly, economists have long revealed a strong preference for the utilitarian approach. As a result, the valuation of marine ecosystems requires that we understand the ecosystem services they deliver and then attach a value to the services. But what tools are available to economists when valuing marine ecosystems? For the most part, ecosystem services are not traded in formal markets and thus actual prices are usually not available. Valuation techniques essentially seek different ways to estimate measures like Willingness To Pay (WTP), Willingness To Accept (WTA), or expenditures and costs. The techniques used for the valuation of ecosystem services can be divided into three main families: market-based, revealed preference, and stated preference. Finally, value-transfer methods are also used when estimates of value are available in similar contexts. All these methods have advantages and disadvantages, with different methods being suitable for different situations. Hence, extra caution is required during the design and implementation of valuation attempts.

Article

Edward B. Barbier

Since the 2004 Indian Ocean tsunami, there has been strong interest globally in restoring mangrove ecosystems and their potential benefits from protecting coastlines and people from damaging storms. However, the net economic gains from mangrove restoration have been variable; there have been some notable project successes but also some prominent failures. There is also an ongoing debate over whether or not the cost of mangrove restoration is justified by the benefits these ecosystems provide. Although the high costs of mangrove restoration and the risk of failure have led to criticism of such schemes, perhaps the more pertinent concern should be whether the ex post option of restoration is economically beneficial compared to preventing irreversible mangrove conversion to alternative land uses. Case studies on mangrove valuation from Brazil and Thailand illustrate the key issues underlying this concern. Since much recent mangrove restoration has been motivated by the trees’ potential storm-protection benefit, a number of studies have valued mangroves for this purpose. However, mangroves are also valued for other important benefits, such as providing collected products for local coastal communities and serving as nursery and breeding grounds for off-shore fisheries. The implications of these benefits for mangrove restoration can be significant. It is also important to understand the appropriate use of benefit transfer when it is difficult to value restored mangroves, methods to incorporate the potential risk of mangrove restoration failure, and assessment of cost-effective mangrove restoration.

Article

Different ecosystem values of the Amazon rainforest are surveyed in economic terms. Spatial rainforest valuation is crucial for good forest management, such as where to put the most effort to stop illegal logging and forest fires, and which areas to designate as new nationally protected areas. Three classes of economic value are identified, according to who does the valuation: values accruing to the local and regional populations (of South America); carbon values (which are global); and other global (noncarbon) values. Only the first two classes are discussed. Three types of value are separated according to ecosystem service delivered from the rainforest: provisioning services; supporting and regulating services; and cultural and other human services. Net values of provisioning services, including reduced impact logging and various non-timber forest products, are well documented for the entire Brazilian Amazon at a spatially detailed scale and amount to at least $20–50/ha/year. Less-detailed information exists about values of fish, game, and bioprospecting from the Amazon, although their total values can be shown to be sizable. Many supporting and regulating services are harder to value economically, in particular climate regulation and watershed and erosion protection. Impacts of changed rainfall when Amazon rainforest is lost have been valued at detailed scale, but with relative model values of $10–20/ha/year. Carbon values are much larger, at a carbon price of $30/ton CO2, around $14,000/ha as capitalized value. The average per-hectare value of tourism and the health benefits from having the Amazon forest are low, and such values cannot easily be pinned down to individual areas of the Amazon. Finally, the biodiversity values of the Amazon, as accruing to the local and regional population, seem to be small based on recent stated-preference work in Brazil. Most of the values related to biodiversity are likely to be global and may. in principle, be very large, but the global components are not valued here. The concept of value is discussed, and a marginal valuation concept (practically useful for policy) is favored as opposed to an average or total valuation. Marginal value can be below average value (as is likely for biodiversity and tourism), but can also in some contexts be higher. This can occur where losing forest at a local scale increases the prevalence of forest fires and where it increases forest dryness, leading to a multiplier process whereby more forest is lost. While strides have recently been made to improve rainforest valuation at both micro- and macroscales, much work still remains.

Article

Payments for ecosystem or environmental services (PES) are broadly defined as payments (in kind or in cash) to participants (often landowners) who volunteer to provide the services either to a specific user or to society at large. Payments are typically conditional on agreed rules of natural resource management rather than on delivery of the services. The rules range from protection of native ecosystems to installation of conservation practices. The earliest proponents of PES were economists who argued that they are a cost-effective way to conserve forests, manage watersheds, and protect biodiversity. Political support for PES rests on the claim that these programs can alleviate poverty among participants as well as protect the environment. More recent literature and experience with PES reveals barriers to achieving cost-effectiveness and poverty alleviation, including many related to the distribution of participation. The Costa Rican experience illustrates the choices that must be made and the potential for innovation in the design of PES programs.

Article

Alexandra Dehnhardt, Kati Häfner, Anna-Marie Blankenbach, and Jürgen Meyerhoff

All types of wetlands around the world are heavily threatened. According to the Ramsar Convention on Wetlands, they comprise “areas of marsh, fen, peatland or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish, or salt.” While they are estimated still to cover 1,280 million hectares worldwide, large shares of wetlands were destroyed during the 20th century, mainly as a result of land use changes. According to the Millennium Ecosystem Assessment (MEA), this applies above all to North America, Europe, Australia, and New Zealand, but wetlands were also heavily degraded in other parts of the world. Moreover, degradation is expected to accelerate in the future due to global environmental change. These developments are alarming because wetlands deliver a broad range of ecosystem services to societies, contributing significantly to human well-being. Among those services are water supply and purification, flood regulation, climate regulation, and opportunities for recreation, to name only a few. The benefits humans derive from those services, however, often are not reflected in markets as they are public goods in nature. Thus, arguing in favor of the preservation of wetlands requires, inter alia, to make the non-marketed economic benefits more visible and comparable to those from alternative—generally private—uses of converted wetlands, which are often much smaller. The significance of the non-market value of wetland services has been demonstrated in the literature: the benefits derived from wetlands have been one of the most frequently investigated topics in environmental economics and are integrated in meta-analyses devoted to synthesizing the present knowledge about the value of wetlands. The meta-analyses that cover both different types of wetlands in different landscapes as well as different geographical regions are supplemented by recent primary studies on topics of increasing importance such as floodplains and peatlands, as they bear, for example, a large flood regulation and climate change mitigation potential, respectively. The results underpin that the conversion of wetlands is accompanied by significant losses in benefits. Moreover, wetland preservation is economically beneficial given the large number of ecosystem services provided by wetland ecosystems. Thus, decision-making that might affect the status and amount of wetlands directly or indirectly should consider the full range of benefits of wetland ecosystems.

Article

Ashley Barfield and Craig E. Landry

The result of interactive dynamics of the ocean, landforms, and weather patterns, sandy beaches and dunes are a natural feature along many coastlines around the world. Their contributions to overall social welfare are multifaceted and complex. Providing water access, recreation and tourism potential, scenic beauty, and leisure amenities, sandy coastlines have witnessed extensive commercial and residential development. Intact beach–dune systems provide coastal development projects with protection from storms, erosion, flooding, and (to some extent) sea-level rise. While yielding value through capital investment, market expansion, and the enhancement of access to natural amenities, increases in buildings and infrastructure can upset the delicate dynamic equilibrium in coastal systems. This, in turn, puts beaches, dunes, wetlands, wildlife habitats, and other ecological resources at risk. Concerns about these impacts have provided the impetus for several environmental management initiatives. Critical to these initiatives is information about the multidimensional economic and social values of coastal amenities, especially beaches and dunes. The economic valuation of beach quality and coastal ecosystem services has traditionally focused on the implementation of non-market valuation techniques, including revealed (e.g., hedonic prices and travel costs) and stated preference (e.g., contingent valuation and choice experiment) approaches, in conjunction with survey/experimental design methods. Analysis of beach quality has become a vibrant topic, especially in response to concerns about the need for climate change adaptation; the impacts of sea-level rise; worsening and more frequent storm events; and changes in ocean temperature, salinity, and alkalinity. Each of these factors can ultimately impact beaches and coastal economies. As a result, the literature has broadened to include a number of interdisciplinary studies that feature the contributions of environmental economics, marine science, applied geology, natural resource management, risk and insurance, and urban planning disciplines, among others. These collaborations have advanced the science of coastal economics and management, but many significant challenges remain. Questions about the optimal order and timing of adaptation procedures, how to balance the provision of synergistic or conflicting goods and services, and how to design dynamic models that incorporate real-world management scenarios across different jurisdictions all require further investigation.

Article

Venetia Alexa Hargreaves-Allen

Marine protected areas (MPAs) remain one of the principal strategies for marine conservation globally. MPAs are highly heterogeneous in terms of physical features such as size and shape, habitats included, management bodies undertaking management, goals, level of funding, and extent of enforcement. Economic research related to MPAs initially measured financial, gross, and net values generated by the habitats, most commonly fisheries, tourism, coastal protection, and non-use values. Bioeconomic modeling also generated important insights into the complexities of fisheries-related outcomes at MPAs. MPAs require a significant investment in public funds for design, designation, and ongoing management, which have associated opportunity costs. Therefore cost-benefit analysis has been increasingly required to justify this investment and demonstrate their benefits over time. The true economic value of MPAs is the value of protection, not the resource being protected. There is substantial evidence that MPAs should increase recreational values due to improvements in biodiversity and habitat quality, but assumptions that MPAs will generate such improvements may not be justified. Indeed, there remains no equivocal demonstration of spillover in fisheries adjacent to MPAs, due in part to the variability inherent in ecological and socio-economic processes and limited evidence of tourism benefits that are biologically or socio-cultural sustainable. There is a need for carefully designed valuation studies that compare values for areas within MPAs compared the same areas without management (the counterfactual scenario). The ecosystem service framework has become widely adopted as a way of characterizing goods and services that contribute directly or indirectly to human welfare. Quantitative analyses of the marginal changes to ecosystem services due to MPAs remains rare due to the requirements of large amounts of fine-grained data, relatively undeveloped bio-physical models for the majority of services, and the complexities of incorporating ecological non-linearities and threshold effects. In addition while some services are synergistic (so that double counting is difficult to avoid), others are traded off. Such marginal ecosystem service values are highly context specific, which limits the accuracy associated with benefits transfer. A number of studies published since 2000 have made advances in this area, and this is a rapidly developing field of research. While MPAs have been promoted as a sustainable development tool, there is evidence of significant distributive impacts of MPAs over time, over different time scales and between different stakeholders, including unintended costs to local stakeholders. Research suggests that support and compliance is predicated on the costs and benefits generated locally, which is a major determinant of MPA performance. Better understanding of socio-economic impacts will help to align incentives with MPA objectives. Further research is needed to value supporting and regulating services and to elucidate how ecosystem service provision is affected by MPAs in different conditions and contexts, over time and compared to unmanaged areas, to guide adaptive management.

Article

A number of challenges are faced by practitioners seeking to elicit values associated with water in a world of global change. These values are needed to assist in decision-making around the use of water as a country’s key asset. Five different pathways show the complexity of the relationship between global change and environmental valuation of water: a climate change pathway, ecosystem infrastructure pathway, population/demographics pathway, income pathway, and technological change/innovation pathway. The challenges are most acute for water when it is related to ecosystem services since values need to be elicited through the use of non-market survey-based valuation techniques. In addition, environmental valuation will be important to inform the determination of water quality standards associated with different uses of water (drinking, recreation, etc.) and the allocation of resources to provide these different services. Several case studies illustrate issues and solutions. The article concludes with an appreciation of future challenges and opportunities.

Article

Kevin J. Boyle and Christopher F. Parmeter

Benefit transfer is the projection of benefits from one place and time to another time at the same place or to a new place. Thus, benefit transfer includes the adaptation of an original study to a new policy application at the same location or the adaptation to a different location. The appeal of a benefit transfer is that it can be cost effective, both monetarily and in time. Using previous studies, analysts can select existing results to construct a transferred value for the desired amenity influenced by the policy change. Benefit transfer practices are not unique to valuing ecosystem service and are generally applicable to a variety of changes in ecosystem services. An ideal benefit transfer will scale value estimates to both the ecosystem services and the preferences of those who hold values. The article outlines the steps in a benefit transfer, types of transfers, accuracy of transferred values, and challenges when conducting ecosystem transfers and ends with recommendations for the implementation of benefit transfers to support decision-making.

Article

Amy W. Ando and Noelwah R. Netusil

Green stormwater infrastructure (GSI), a decentralized approach for managing stormwater that uses natural systems or engineered systems mimicking the natural environment, is being adopted by cities around the world to manage stormwater runoff. The primary benefits of such systems include reduced flooding and improved water quality. GSI projects, such as green roofs, urban tree planting, rain gardens and bioswales, rain barrels, and green streets may also generate cobenefits such as aesthetic improvement, reduced net CO2 emissions, reduced air pollution, and habitat improvement. GSI adoption has been fueled by the promise of environmental benefits along with evidence that GSI is a cost-effective stormwater management strategy, and methods have been developed by economists to quantify those benefits to support GSI planning and policy efforts. A body of multidisciplinary research has quantified significant net benefits from GSI, with particularly robust evidence regarding green roofs, urban trees, and green streets. While many GSI projects generate positive benefits through ecosystem service provision, those benefits can vary with details of the location and the type and scale of GSI installation. Previous work reveals several pitfalls in estimating the benefits of GSI that scientists should avoid, such as double counting values, counting transfer payments as benefits, and using values for benefits like avoided carbon emissions that are biased. Important gaps remain in current knowledge regarding the benefits of GSI, including benefit estimates for some types of GSI elements and outcomes, understanding how GSI benefits last over time, and the distribution of GSI benefits among different groups in urban areas.

Article

Watersheds are physical regions from which all arriving water flows to a single exit point. The shared hydrology means that other biophysical systems are linked, typically with upper-gradient regions influencing lower-gradient ones. This situation frames the challenge of managing economic and other uses of watersheds both in terms of individual activities and their influence on other connected processes and activities. Economics provides concepts and methods that help managers with decision making in the complex physical, biological, and institutional environment of a watershed. Among the important concepts and methods that help characterize watershed processes are externalities, impacts of economic activity that fall upon individuals not party to the activity, and third parties, individuals impacted without consent. Public goods and common pool resources describe categories of things or processes that by their nature are not amenable to regular market transactions. Their regulation requires special consideration and alternative approaches to markets. Benefit-cost analysis and valuation are related methods that provide a means to compare alternative uses of the same system. Each is based on the normative argument that the best use provides the greatest net benefits to society. And intergenerational equity is a value orientation that argues for preservation of watershed processes for the benefit of future generations. The need for effective watershed management methods pushed 20th-century economists to adapt their discipline to the complexity of watersheds, from which emerged subdisciplines of natural resource economics, environmental economics, and ecological economics. The field is still evolving with a growing interest in data gathering through land-based low-cost data collection systems and remote sensing, and in emerging data analysis techniques to improve management decisions.