1-3 of 3 Results  for:

  • Keywords: sustainable development x
  • Agriculture and the Environment x
Clear all


Soil Resources, the Delivery of Ecosystem Services and Value  

David A. Robinson, Fiona Seaton, Katrina Sharps, Amy Thomas, Francis Parry Roberts, Martine van der Ploeg, Laurence Jones, Jannes Stolte, Maria Puig de la Bellacasa, Paula Harrison, and Bridget Emmett

Soils provide important functions, which according to the European Commission include: biomass production (e.g., agriculture and forestry); storing, filtering, and transforming nutrients, substances, and water; harboring biodiversity (habitats, species, and genes); forming the physical and cultural environment for humans and their activities; providing raw materials; acting as a carbon pool; and forming an archive of geological and archaeological heritage, all of which support human society and planetary life. The basis of these functions is the soil natural capital, the stocks of soil material. Soil functions feed into a range of ecosystem services which in turn contribute to the United Nations sustainable development goals (SDGs). This overarching framework hides a range of complex, often nonlinear, biophysical interactions with feedbacks and perhaps yet to be discovered tipping points. Moreover, interwoven with this biophysical complexity are the interactions with human society and the socioeconomic system which often drives our attitudes toward, and the management and exploitation of, our environment. Challenges abound, both social and environmental, in terms of how to feed an increasingly populous and material world, while maintaining some semblance of thriving ecosystems to pass on to future generations. How do we best steward the resources we have, keep them from degradation, and restore them where necessary as soils underpin life? How do we measure and quantify the soil resources we have, how are they changing in time and space, what can we predict about their future use and function? What is the value of soil resources, and how should we express it? This article explores how soil properties and processes underpin ecosystem services, how to measure and model them, and how to identify the wider benefits they provide to society. Furthermore, it considers value frameworks, including caring for our resources.


A Socio-Hydrological Perspective on the Economics of Water Resources Development and Management  

Saket Pande, Mahendran Roobavannan, Jaya Kandasamy, Murugesu Sivapalan, Daniel Hombing, Haoyang Lyu, and Luuk Rietveld

Water quantity and quality crises are emerging everywhere, and other crises of a similar nature are emerging at several locations. In spite of a long history of investing in sustainable solutions for environmental preservation and improved water supply, these phenomena continue to emerge, with serious economic consequences. Water footprint studies have found it hard to change culture, that is, values, beliefs, and norms, about water use in economic production. Consumption of water-intensive products such as livestock is seen as one main reason behind our degrading environment. Culture of water use is indeed one key challenge to water resource economics and development. Based on a review of socio-hydrology and of societies going all the way back to ancient civilizations, a narrative is developed to argue that population growth, migration, technology, and institutions characterize co-evolution in any water-dependent society (i.e., a society in a water-stressed environment). Culture is proposed as an emergent property of such dynamics, with institutions being the substance of culture. Inclusive institutions, strong diversified economies, and resilient societies go hand in hand and emerge alongside the culture of water use. Inclusive institutions, in contrast to extractive institutions, are the ones where no small group of agents is able to extract all the surplus from available resources at the cost of many. Just as values and norms are informed by changing conditions resulting from population and economic growth and climate, so too are economic, technological, and institutional changes shaped by prevailing culture. However, these feedbacks occur at different scales—cultural change being slower than economic development, often leading to “lock-ins” of decisions that are conditioned by prevailing culture. Evidence-based arguments are presented, which suggest that any attempt at water policy that ignores the key role that culture plays will struggle to be effective. In other words, interventions that are sustainable endogenize culture. For example, changing water policy, for example, by taking water away from agriculture and transferring it to the environment, at a time when an economy is not diversified enough to facilitate the needed change in culture, will backfire. Although the economic models (and policy based on them) are powerful in predicting actions, that is, how people make choices based on how humans value one good versus the other, they offer little on how preferences may change over time. The conceptualization of the dynamic role of values and norms remains weak. The socio-hydrological perspective emphasizes the need to acknowledge the often-ignored, central role of endogenous culture in water resource economics and development.


Water Security  

Claudia Sadoff, David Grey, and Edoardo Borgomeo

Water security has emerged in the 21st century as a powerful construct to frame the water objectives and goals of human society and to support and guide local to global water policy and management. Water security can be described as the fundamental societal goal of water policy and management. This article reviews the concept of water security, explaining the differences between water security and other approaches used to conceptualize the water-related challenges facing society and ecosystems and describing some of the actions needed to achieve water security. Achieving water security requires addressing two fundamental challenges at all scales: enhancing water’s productive contributions to human and ecosystems’ well-being, livelihoods and development, and minimizing water’s destructive impacts on societies, economies, and ecosystems resulting, for example, from too much (flood), too little (drought) or poor quality (polluted) water.