1-5 of 5 Results

  • Keywords: energy x
Clear all

Article

Legal Regimes for Sharing Transboundary Water  

Mara Tignino

The law applicable to transboundary waters is a corpus juris that dates back to the 19th century. It originally focused on regulating the uses of transboundary watercourses for navigation and commercial transport. It was crafted primarily on the European and North American continents, and it has gradually become universally applicable, thereby taking a new shape. The regulation of transboundary waters was rooted in a strict dynamic of coexistence between sovereign entities: each acted as it saw fit with respect to “its” portion of the watercourse, which was treated at the same time as the image of the territory to which it is attached. The need for regulation only arose when uses affected the riparian states’ exercise of their “sovereign rights.” Since the 1990s, the law has tried to break away from this “classical” logic to make room for more community-based and even “ecosystem” notions based on aspects of joint management, and sometimes even pool of shared resources. A number of treaties have been negotiated and adopted by states bordering transboundary watercourses in Europe, Asia, Africa, and the Americas. They reflect, and sometimes even develop, some of the principles and rules enacted in broader forums, such as the United Nations (UN) or its Economic Commission for Europe, or the European Union. These efforts show the steps taken in the field of transboundary waters management, but they also reveal some of its limits, as they do not always comprehend all facets of water management and protection.

Article

The Emergence of Environment as a Security Imperative  

Felix Dodds

The emergence of environment as a security imperative is something that could have been avoided. Early indications showed that if governments did not pay attention to critical environmental issues, these would move up the security agenda. As far back as the Club of Rome 1972 report, Limits to Growth, variables highlighted for policy makers included world population, industrialization, pollution, food production, and resource depletion, all of which impact how we live on this planet. The term environmental security didn’t come into general use until the 2000s. It had its first substantive framing in 1977, with the Lester Brown Worldwatch Paper 14, “Redefining Security.” Brown argued that the traditional view of national security was based on the “assumption that the principal threat to security comes from other nations.” He went on to argue that future security “may now arise less from the relationship of nation to nation and more from the relationship between man to nature.” Of the major documents to come out of the Earth Summit in 1992, the Rio Declaration on Environment and Development is probably the first time governments have tried to frame environmental security. Principle 2 says: “States have, in accordance with the Charter of the United Nations and the principles of international law, the sovereign right to exploit their own resources pursuant to their own environmental and developmental policies, and the responsibility to ensure that activities within their jurisdiction or control do not cause damage to the environment of other States or of areas beyond the limits of national.” In 1994, the UN Development Program defined Human Security into distinct categories, including: • Economic security (assured and adequate basic incomes). • Food security (physical and affordable access to food). • Health security. • Environmental security (access to safe water, clean air and non-degraded land). By the time of the World Summit on Sustainable Development, in 2002, water had begun to be identified as a security issue, first at the Rio+5 conference, and as a food security issue at the 1996 FAO Summit. In 2003, UN Secretary General Kofi Annan set up a High-Level Panel on “Threats, Challenges, and Change,” to help the UN prevent and remove threats to peace. It started to lay down new concepts on collective security, identifying six clusters for member states to consider. These included economic and social threats, such as poverty, infectious disease, and environmental degradation. By 2007, health was being recognized as a part of the environmental security discourse, with World Health Day celebrating “International Health Security (IHS).” In particular, it looked at emerging diseases, economic stability, international crises, humanitarian emergencies, and chemical, radioactive, and biological terror threats. Environmental and climate changes have a growing impact on health. The 2007 Fourth Assessment Report (AR4) of the UN Intergovernmental Panel on Climate Change (IPCC) identified climate security as a key challenge for the 21st century. This was followed up in 2009 by the UCL-Lancet Commission on Managing the Health Effects of Climate Change—linking health and climate change. In the run-up to Rio+20 and the launch of the Sustainable Development Goals, the issue of the climate-food-water-energy nexus, or rather, inter-linkages, between these issues was highlighted. The dialogue on environmental security has moved from a fringe discussion to being central to our political discourse—this is because of the lack of implementation of previous international agreements.

Article

Use of Experimental Economics in Policy Design and Evaluation: An Application to Water Resources and Other Environmental Domains  

Simanti Banerjee

Economics conceptualizes harmful effects to the environment as negative externalities that can be internalized through implementation of policies involving regulatory and market-based mechanisms, and behavioral economic interventions. However, effective policy will require knowledge and understanding of intended and unintended stakeholder behaviors and consequences and the context in which the policy will be implemented. This mandate is nontrivial since policies once implemented can be hard to reverse and often have irreversible consequences in the short and/or long run, leading to high social costs. Experimental economics (often in combination with other empirical evaluation methods) can help by testing policies and their impacts prior to modification of current policies, and design and implementation of new ones. Such experimental evaluation can include lab and field experiments, and choice experiments. Additionally, experimental policy evaluation should pay attention to scaling up problems and the ethical ramifications of the treatment. This would ensure that the experimental findings will remain relevant when rolled out to bigger populations (hence retaining policy makers’ interest in the method and evidence generated by it), and the treatment to internalize the externality will not create or exacerbate societal disparities and ethical challenges.

Article

Input–Output Models Applied to Environmental Analysis  

Joaquim J.M. Guilhoto

Input–Output (I–O) models and analysis were originally conceived by the Nobel Prize winner Wassily Leontief in the 1930s as a tool that can be used by economists and economic policy makers to help in their decision process. The I–O models provide a “picture” of how the economy works, that is, what are the necessities to produce goods and services, how this production generates income, profits and taxes, and how this income is spent. In a simplified way the I–O models can be seen as the model implementation of the economy circular-flow diagrams usually shown in economics introductory courses. Associated with the theory behind I–O models and analysis, I–O tables contain the empirical information necessary to implement these models and theory. Taking, for example, the production of computer screens: • On the production side, the I–O models have information on: (a) how much is spent on the inputs, goods and services necessary to produce the screens; (b) whether these inputs have their origin in the domestic market or are imported; (c) how much was paid in tax to the government; (d) what was the total amount paid in wages and salaries; (e) what were the profits of the producing firms; (f) how many computer screens are sold on the domestic market or on the international market (exported); and (g) whether they are sold directly to the final consumer or are used as a production input, that is, incorporated into other goods, for example, a refrigerator with a computer screen; • On the demand side, the I–O models, taking into consideration the total income received by the different players in the economy, that is, households, firms, and government, have information on: (a) how the income of these players is spent on goods and services, and whether it is used for consumption or investment; (b) whether these goods and services were produced domestically or abroad (imported); and (c) how much consumer tax was paid. From the aforementioned structure of I–O models, and using economic mathematical models, it is possible to measure the direct and indirect inputs needed to produce goods and services in the economy, for example, to produce a car there is no need for agricultural goods as a direct input for production, but the fabric used in the car seats or on the car carpets could have come from cotton, which is an agricultural good, so, cotton is an indirect input used in car production. I–O models, by their capability to show a complete picture of the economic system, and tracing of the origin of direct and indirect inputs used in the production process, can be used in environmental studies by linking economic and environmental variables, on the production and consumption sides. From the production side it is possible to measure, by considering the direct and indirect inputs used, how many natural resources were used and how much pollution was generated in producing the goods and services. On the demand side it is possible to measure the environmental variables, natural resources, and pollution, embodied in the goods and services consumed in the economy. Expanding I–O models to a global scale, that is, using inter-country I–O models, it is possible to measure the environmental impacts, and contents, of the goods and services by country of origin of production and by countries of consumption.

Article

Agricultural Energy Demand and Use  

David Roland-Holst

This overview article examines the historical and technical relationship between agrifood supply chains and energy services. Because agriculture is the original environmental science, all technological change in food production has environmental implications, but these are especially serious in the context of conventional energy use. Agrifood sustainability is of paramount importance to us all, and this will require lower carbon pathways for agriculture.