Show Summary Details

Page of

PRINTED FROM the OXFORD RESEARCH ENCYCLOPEDIA,  ENVIRONMENTAL SCIENCE (oxfordre.com/environmentalscience) (c) Oxford University Press USA, 2020. All Rights Reserved. Personal use only; commercial use is strictly prohibited (for details see Privacy Policy and Legal Notice).

date: 09 July 2020

Summary and Keywords

Agriculture has been said to be the key to civilization development. The longevity of the production of the soils which sustained the population development influenced, in fact caused, the rise and often the collapse of those ancient cultures. Furthermore, the fertilization of those soils, if by new sediment or by other means, enabled some civilizations to survive longer than others. It was only with the development of more consistent fertilization and newer, higher-analysis materials that crop production entered an era where it could reliably feed beyond the family unit but feed the city, and then the whole country. This modern industrial fertilization required fewer people to be devoted to food production so that their efforts could be directed to more secondary and tertiary careers. The growth of the use of fertilizer by over 200% in 40 years has led to an increased scrutiny of its environmental aspect in the early 21st century, and this has led to a revaluation of application procedures and to an increase in research and development of new forms of fertilizer and into ways to change modern fertilizers’ environmental footprints to better steward food production and remedy systems that are off target environmentally. These technologies are sometimes very basic, such as including combinations of elements which help stabilize each other (e.g. sulfur and nitrogen or phosphorus and sulfur). Other technologies include polymer-coating (e.g. slow-release coatings) and impregnatable coatings (e.g. nitrapyrin, NBPT). In other cases, new materials have been developed (e.g. methylated urea) and in yet others progress has come from a mixing of other compounds with the fertilizer (e.g. gypsum to phosphorus fertilizer, or humic acids to nitrogen formulations). Lastly, there has been a rise in the importance of micronutrients as production has increased (e.g. zinc, manganese, and boron) especially as yield levels have increased.

Keywords: fertilizer, nutrient, macronutrient, micronutrient, nitrogen, phosphorus, potassium, sulfur, calcium, magnesium, zinc, manganese, boron, copper, iron, cobalt, nickel

Access to the complete content on Oxford Research Encyclopedia of Environmental Science requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription. If you are a student or academic complete our librarian recommendation form to recommend the Oxford Research Encyclopedias to your librarians for an institutional free trial.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can't find the answer there, please contact us.