Resilience thinking in relation to the environment has emerged as a lens of inquiry that serves a platform for interdisciplinary dialogue and collaboration. Resilience is about cultivating the capacity to sustain development in the face of expected and surprising change and diverse pathways of development and potential thresholds between them. The evolution of resilience thinking is coupled to social-ecological systems and a truly intertwined human-environment planet. Resilience as persistence, adaptability and, transformability of complex adaptive social-ecological systems is the focus, clarifying the dynamic and forward-looking nature of the concept. Resilience thinking emphasizes that social-ecological systems, from the individual, to community, to society as a whole, are embedded in the biosphere. The biosphere connection is an essential observation if sustainability is to be taken seriously. In the continuous advancement of resilience thinking there are efforts aimed at capturing resilience of social-ecological systems and finding ways for people and institutions to govern social-ecological dynamics for improved human well-being, at the local, across levels and scales, to the global. Consequently, in resilience thinking, development issues for human well-being, for people and planet, are framed in a context of understanding and governing complex social-ecological dynamics for sustainability as part of a dynamic biosphere.

Keywords: resilience, social-ecological, development, transformation, sustainability

The last 15 years have seen an explosion of resilience research. A search on resilience at Google Scholar presents over 1.25 million hits today. About a million of those concern resilience and the environment (February 2016). Since 2000, the resilience and environment hits have increased about 14 times. In a search at ISI Web of Science (December 2015) there were, in year 2000, about 250 scientific publications on resilience in relation to the environment. In the last 15 years, the number has increased about 25 times, to well over 6,000 publications with more than a total of 120,000 citations across the natural sciences, social sciences, and humanities, and in interdisciplinary journals (Figure 1).

Resilience is a concept used in several areas and disciplines (e.g., Brand & Jax, 2007; Baggio et al., 2015). It has a strong tradition in psychology and human development (e.g., Brown & Westaway, 2011) and in ecology, ecosystem science, environmental management, and more recently social-ecological systems (e.g., Curtin & Parker, 2014; Des-
Resilience

jardins et al., 2015; Folke, 2006). Now, resilience is found in studies on technology, networks, the welfare state, regional development, globalization, international relations, politics, organizational development, social innovation, in management journals, education research, communication, building research, planning and urbanization, crime, health, risk and disaster management, national security, climate change, etc. Scholarly journals focusing on resilience have emerged—Resilience: International Policies, Practices and Discourses (Routledge), International Journal of Disaster Resilience in the Built Environment (Emerald) and Ecology and Society: Integrative Science for Resilience and Sustainability, published by the Resilience Alliance.

Resilience thinking has become part of practice, policy and business across the world, ranging from poverty alleviation to political frameworks and business strategies to anticipate and respond to change and crisis, not only to survive, but also to evolve. For example, resilience thinking has played a central role in the governance of the Great Barrier Reef in Australia and, in assessments of the future of the Arctic. The Global Resilience Partnership, convened by The Rockefeller Foundation, USAID, and Sida, Sweden, aims to help millions in Africa and Asia build more resilient futures. Resilience thinking is part of stewardship of diverse landscapes and seascapes, from water managers and farmers to municipalities and urban planners (e.g., Andersson et al., 2014; Harrison et al., 2014; Lengnick, 2015; Sellberg et al., 2015; Walker & Salt, 2012). In the 100 resilient cities collaboration, the focus has been on the capacity of individuals, communities, institutions, businesses, and systems within a city to survive, adapt, and develop no matter what kinds of chronic stresses and acute shocks they experience. In the Transition Towns movement, resilience thinking has been used as an organizing principle by communities to challenge the status quo and to design and shape alternative futures (Brown, 2014). New collaborations for building resilience have emerged, like the global flood resilience alliance initiated by an insurance company, or the Resilience Action Initiative of several multinational enterprises (Kupers, 2014) focusing on practical action to deal with turbulent times in the context of food, water, energy and climate and to strengthen the adaptive capacity of their own operations in the communities they interact with and depend upon. In 2008, the World Resources Institute published, with United Nations Development Program (UNDP), United Nations Environment Program (UNEP), and the World Bank, the report “Roots of Resilience: Growing the Wealth of the Poor.” The UN-High Level Panel on Global Sustainability produced for the Rio+20 event in 2012 the report “Resilient People, Resilient Planet: A Future Worth Choosing.” The World Economic Forum’s Global Risks 2013 report focused on resilience, and “Resilient Dynamism” was the theme of the Forum’s 2013 annual meeting. These reflect but a handful of examples. Resilience is widely spread.
Figure 1. The resilience and environment explosion in research. The graph presents the number of annual citations attributed to resilience in relation to the environment (environmental studies, environmental sciences, ecology). The number has increased from less than 100 citations in year 1995 to more than 20,000 citations in 2014 and 2015, respectively (based on ISI Web of Science, Dec. (2015)).

Here, the focus is on resilience and the environment in relation to development and in particular on the evolution and spread of resilience thinking in this context (e.g., Folke et al., 2010; Walker & Salt, 2006). Resilience thinking emerged from the discovery, based on observation, that living systems have multiple basins of attraction (Holling, 1973). It has developed into an approach for understanding complex adaptive systems, and it serves as a platform for interdisciplinary and transdisciplinary research with an emphasis on social-ecological systems (e.g., Levin et al., 2013). Social-ecological systems are intertwined systems of people and nature embedded in the biosphere, the thin fragile layer of life around planet Earth (e.g., Berkes & Folke, 1998; Folke et al., 2011). The biosphere connection is a central observation that has to be visible in work on resilience and social-ecological systems if sustainability is to be taken seriously.

What Is Resilience?

In some fields, the term resilience has been used in a narrow sense to refer to the return rate to equilibrium upon a perturbation. Others tend to interpret resilience as bouncing back after a disturbance, or recovery time, or recovery to what you were before in more general terms. In this way of looking at the world, there is often an implicit focus on trying to resist change and control it to maintain stability. The resilience approach of Resilience thinking is much richer. It deals with complex adaptive system dynamics and true uncertainty and how to learn to live with change and make use of it. Resilience thinking is the focus of this article.

In popular terms, resilience is having the capacity to persist in the face of change, to continue to develop with ever changing environments. Resilience thinking is about how periods of gradual changes interact with abrupt changes, and the capacity of people, communities, societies, cultures to adapt or even transform into new development pathways in the face of dynamic change. It is about how to navigate the journey in relation to diverse
Resilience

pathways, and thresholds and tipping points between them. In resilience thinking, adaptation refers to human actions that sustain development on current pathways, while transformation is about shifting development into other emergent pathways and even creating new ones.

Deliberate transformation involves breaking down the specific resilience of the old and building the resilience of the new (Folke et al., 2010). Specified resilience concerns resilience of what to what (Carpenter et al., 2001) and also for whom (Brown, 2014; Lebel et al., 2006; Robards et al., 2011). General resilience is for the unknown and the unknowable (Kates & Clark, 1996; Peterson, Carpenter, & Brock, 2003; Polasky, de Zeeuw, & Wagener, 2011), for having the capacity to deal with complexity, uncertainty, and surprise (Biggs, Bleckner, et al., 2012; Carpenter, Arrow, et al., 2012; Walker, Abel, et al., 2009). General resilience provides sources of memory, flexibility, options, and innovations for transformation and can help turn a crisis into an opportunity (e.g., Gunderson & Holling, 2002; Nykvist & von Heland, 2014).

Early Work on Resilience and the Environment

Resilience as a concept in relation to the environment, or more specifically to ecosystems, was proposed by Holling (1973) as a way to understand the capacity of ecosystems to absorb change (reviewed by e.g., Desjardins et al., 2015; Gunderson, 2000) or more specifically, how to persist developing in the original state subject to disturbances and changing conditions (Holling, 1973).

Holling introduced resilience in the context of multiple stability domains or multiple basins of attraction in ecosystems, a radical idea at that time (Folke, 2006). His discovery of multiple basins of attraction in ecosystem dynamics challenged the, at that time, dominant stable-equilibrium view of ecosystems. He investigated how ecosystems relate to random events and heterogeneity of temporal and spatial scales and defined resilience as persistence of relationships within a system, as a measure of the ability of systems to absorb changes of state variables, driving variables, and parameters, and still persist (Holling, 1973).

The early days of resilience thinking draw on empirical observations of ecosystem dynamics often interpreted in mathematical models. Hence, inductive observations and empirical work led to the formulation of resilience as a feature of dynamic systems. Classic early work include, for example, Ludwig, Jones, and Holling (1978) and Walker, Ludwig, Holling, and Peterman (1981), some of which are compiled in Gunderson, Allen, and Holling (2009). The pioneering interdisciplinary volume Sustainable Development of the Biosphere, edited by Clark and Munn (1986) included Holling’s (1986) classic chapter developing the theoretical basis for resilience dynamics emerging from the comparison of the ecosystem studies. In that chapter, the Adaptive Cycle of system development was introduced.
The multi-basins of attraction and resilience as the science of surprise became the theoretical foundation for the work, with active adaptive management of ecosystems where Buzz Holling, Carl Walters, Bill Clark, and colleagues mobilized a series of studies of large scale ecosystems subject to management (Clark et al., 1979; Holling, 1978; Holling & Chambers, 1973; Walters, 1986; Walters & Hilborn, 1978; Walters & Holling, 1990). The adaptive management process allowed for comparative analyses of the theoretical foundations of ecosystems behavior and ecosystems management. The conceptual underpinnings of adaptive management are simple; there will always be inherent uncertainty and unpredictability in the dynamics and behavior of complex systems, as a result of non-linear interactions among components and emergence, yet management decisions must still be made, and whenever possible, learning should be incorporated into management (e.g., Allen et al., 2011).

The resilience approach began early to influence work and discussions in fields outside ecology like anthropology, ecological economics, environmental psychology, human geography, and the management literature (reviewed in e.g., Abel & Stepp, 2003; Davidson-Hunt & Berkes, 2003; Folke, 2006; Scoones, 1999).

The Beijer Institute of the Royal Swedish Academy of Sciences was restarted in 1991, with a focus on the interface of ecology and economy. In the diverse research programmes of the Institute, resilience appeared and reappeared as a central feature for understanding complex system dynamics (e.g., Costanza et al., 1993). The volume *Biodiversity Loss* (Perrings et al., 1995) presented an ecological primer on functional diversity, regime shifts, and ecosystem services in an ecosystem resilience and cross-scale context (Holling et al., 1995; see also Elmqvist et al., 2003; Folke et al., 1996; Hughes et al., 2007; Lundberg & Moberg, 2003; Nyström et al., 2000; Peterson et al., 1998). Several papers as part of the Biodiversity program (e.g., Gadgil et al., 1993; Hammer et al., 1993; Perrings et al., 1992; Walker, 1993) and a recognized paper on economic growth (Arrow et al., 1995) incorporated resilience as a significant feature for human and environmental interactions (see also Levin et al., 1998). Holling and colleagues released the innovative book *Barrier and Bridges to the Renewal of Ecosystems and Institutions* in 1995 (Gunderson et al., 1995). The Beijer Institute program property rights and the performance of natural systems (Hanna et al., 1996) generated the Berkes and Folke (1998) volume *Linking Social and Ecological Systems: Management Practices and Social Mechanisms for Building Resilience*, one of the first volumes focusing on social-ecological systems and resilience thinking (e.g., Curtin & Parker, 2014; Ostrom, 1999).

As a reflection of the significance of a resilience lens for understanding complex social-ecological systems, the research program The Resilience Network was initiated through a collaboration of the Beijer Institute (Måler and Folke) and University of Florida (Holling and Gunderson), a program that engaged pioneering resilience thinkers and that triggered a lot of interesting and path breaking work on resilience including the rich Panarchy volume (Gunderson & Holling, 2002), a volume on the significance of non-linear dynamics and regime shifts in economics—*The Economics of Non-Convex Ecosystems* (Dasgupta & Måler, 2004) and the Berkes, Colding, and Folke (2003) book, *Navigating So*
Resilience

Social-Ecological Systems: Building Resilience for Complexity and Change, emphasizing the challenge of governing dynamic interactions between gradual and abrupt changes in social-ecological systems. This book presented a major synthesis of resilience challenges for social-ecological systems (Folke et al., 2003).

The Resilience Network later developed into the Resilience Alliance (RA), founded in 1999, with a coherent group of researchers oriented toward common intellectual goals who worked together at the fringe of scientific understanding (Parker & Hackett, 2012). The RA has contributed insights on resilience in complex social-ecological systems (e.g., Chapin et al., 2009; Janssen, 2002; Norberg & Cumming, 2008; Peterson, 2000; Walker & Salt, 2006), developed resilience thinking (e.g., Carpenter et al., 2001; Folke, 2006; Nelson et al., 2007; Quinlan et al., 2015; Walker & Salt, 2006), and also linked it to development agendas (e.g., Brown, 2016). For example, Elinor Ostrom, engaged on the Beijer Institute Board and later on the Stockholm Resilience Centre Board, became part of the Resilience Alliance, inspired by resilience thinking and the work on social-ecological systems (Ostrom, 1999, 2007, 2009). Ostrom’s discussions at the Beijer Institute with Brian Walker and others on functional diversity and redundancy in ecosystem dynamics and regime shifts (e.g., Elmqvist et al., 2003; Peterson et al., 1998; Walker, 1992) inspired her book on institutional diversity (Ostrom, 2005).

Major syntheses on resilience and regime shifts in ecosystems were published (e.g., Bellwood et al., 2004; Carpenter, 2003; Folke et al., 2004; Scheffer et al., 2001). Resilience work expanded from adaptively managing ecosystems (e.g., Curtin & Parker, 2014; Gunderson & Pritchard, 2002) to adaptively governing complex social-ecological systems (e.g., Armitage et al., 2007, 2009; Folke et al., 2005), bringing in the role of institutions, organizations, networks, and agencies in this context (e.g., Adger, 2000; Berkes, 2009; Bodin & Crona, 2009; Crona & Bodin, 2006; Dietz et al., 2003; Galaz, 2005; Lebel et al., 2006; Olsson et al., 2004; Tompkins, 2005; Westley et al., 2006), social learning elements and knowledge systems (e.g., Berkes et al., 2000; Chapin et al., 2006; Fazey et al., 2007; Forbes et al., 2009; Olsson & Folke, 2001; Pahl-Wostl, 2007), ancient cultures (Hegmon et al., 2008; Redman & Kinzig, 2003), and political and power dimensions of sustainability (e.g., Adger, Brown, & Tompkins, 2005; Gelcich et al., 2006; Michon, 2011).

As indicated through the large number of publications and citations in the introduction, the resilience concept has spread, and this is not the place to review the large and expanding literature (e.g., Baggio et al., 2015; Brand & Jax, 2007; Brown & Westaway, 2011; Desjardins et al., 2015; Janssen, 2007; Meerow & Newell, 2015; Pu & Qiu, 2016; Xu & Marinova, 2013), close to an impossible task. But, resilience is influencing the environmental sciences from agriculture to oceans, as well as global, environmental, and climate change reflected in the IPCC Reports (e.g., O’Brien et al., 2012) and employed in risk and disaster management (e.g., Berkes, 2007; Djalante et al., 2013; McSweeney & Coomes, 2011; Tidball et al., 2010; Tidball & Stedman, 2012). Resilience thinking is raised in the development literature and in diverse ontologies and epistemologies of the social sciences and the humanities (e.g., Barrett & Constas, 2014; Bourbeau, 2015; Chandler, 2014; Crepin et al., 2012; Ebbesson & Hey, 2013; Hall & Lamont, 2013; Hamel & Välikan-
After all, respect for pluralism (e.g., Norgaard, 1989), epistemological agility (the capacity to work productively across knowledge domains) (McWilliam, 2009), and an open mind capable of moving out of and dynamically modifying one’s pre-analytic vision (e.g., Costanza, 2001) are assets with the potential to augment collective understanding of complex social-ecological challenges. Attempts to integrate diverse perspectives or incorporate all dimensions into one unitary approach runs the risk of undermining the intellectual wealth and dialogues necessary to meet the challenges of the globally intertwined Anthropocene (e.g., Arora-Jonsson, 2016; Bousquet et al., 2015). Resilience thinking serves as one useful lens among many to ask questions, learn, and improve understanding of social-ecological systems.

Current Definition of Resilience Thinking—Integrating Resilience, Adaptability, Transformability

Resilience reflects the ability of people, communities, societies, and cultures to live and develop with change and with ever-changing environments. It is about cultivating the capacity to sustain development in the face of change, incremental and abrupt, expected and surprising (Folke, 2006). The resilience approach emphasizes that social-ecological systems need to be managed and governed for flexibility and emergence rather than for maintaining stability (e.g., Carpenter, Brock, et al., 2015; Peterson, Cumming, & Carpenter, 2003). Hence, resilience, as in focus here, is a dynamic concept concerned with navigating complexity, uncertainty and change across levels and scales (e.g., Berkes et al., 2003; Cash et al., 2006; Cumming et al., 2013) on a human dominated planet (e.g., Lubchenco, 1998; Steffen et al., 2007).

Resilience is about persisting with change on the current path of development (stability domain or basin of attraction), adapting, improving, and innovating on that path. It is about having the capacity to continue to learn, self-organize, and develop in dynamic environments faced with true uncertainty and the unexpected, like steering a vessel in turbulent waters (e.g., Olsson et al., 2006).

But, sometimes navigation leads to induced isolation and intensification of particular paths and to traps that are difficult to get out of (e.g., Holling & Meffe, 1996; Sterner et al., 2006). The resilience of the system has become too robust and rigid (e.g., Allison & Hobbs, 2004; Cumming et al., 2014; Janssen & Scheffer, 2004; Steneck et al., 2011; Österblom et al., 2011). In such situations the challenge is to reduce or even break resilience of the current system to enable shifts away from the current pathway(s) into new ones, into alternative basins of attraction (Carpenter & Brock, 2008; Enfors, 2013; Marshall et al., 2012; Walker, Abel, et al., 2009). Sometimes those shifts may be smooth, other
Resilience
times revolutionary. As resilience declines, it takes progressively smaller disturbances to push the system into a different regime, or basin of attraction (Scheffer & Carpenter, 2003). Such regime shifts are at the core of resilience thinking (e.g., Biggs, Blenckner, et al., 2012; Rocha et al., 2015).

Resilience is the capacity of a system to absorb disturbance and reorganize while undergoing change so as to still retain essentially the same function, structure and feedbacks, & therefore identity, that is, the capacity to change in order to maintain the same identity, i.e. resilience is a dynamic concept focusing on how to persist with change (Folke et al., 2010; Walker et al., 2004), how to evolve with change.

Adaptability refers to human actions that sustain development on current pathways. Adaptation is a process of deliberate change in anticipation of or in reaction to external stimuli and stress (Nelson et al., 2007). Adaptation and adaptive capacity of people, communities, and societies are concepts in use in global environmental change in general and in climate change in particular (e.g., Engle, 2011; Smit & Wandel, 2006; Wise et al., 2014) with overlap with resilience thinking. The adaptability concept in resilience thinking captures the capacity of people in a social-ecological system to learn, combine experience and knowledge, innovate, and adjust responses and institutions to changing external drivers and internal processes. Adaptability has been defined as “the capacity of actors in a system to influence resilience” (Walker et al., 2004) and is about adapting within critical social-ecological thresholds. Adaptability is central to persistence. It helps turn changes and surprises into opportunities; hence, it is an important part of social-ecological resilience (Berkes et al., 2003; Nelson et al., 2007).

Transformability is about shifting development into new pathways and even creating novel ones. It is about the having the ability to cross thresholds and move social-ecological systems into new basins of attractions, into new, emergent, and often unknown development trajectories (e.g., Marshall et al., 2012; Walker, Abel, et al., 2009). Such ability draws on sources of resilience from levels and scales other than the one in focus for the transformation of the existing system. Crises can open up space for transformations, for new ways of thinking and operating. Here, experiences can be revitalized, recombined for novelty, and can help navigate the arising opportunities (e.g., Folke et al., 2009; Gunderson & Holling, 2002). Transformability has been defined as “the capacity to create a fundamentally new system when ecological, economic, or social structures make the existing system untenable” (Folke et al., 2010; Walker et al., 2004).

Transformability and transformation trajectories are the subject of growing interest (e.g., Future Earth) and literature (e.g., Chapin et al., 2010; Geels & Kemp, 2006; Leach et al., 2012; Loorbach, 2007; O’Brien et al., 2012; Olsson et al., 2014; Westley et al., 2011). Some scholars see transformation as the consequence of societal collapse, and others see the capacity to actively transform as an essential property of long-lasting functioning social-ecological systems (Feola, 2015). There are several different ways of approaching transformations (e.g., Fischer-Kowalski & Rotmans, 2009; Kates et al., 2012; Moore et al., 2014; O’Brien, 2012; Park et al., 2012; Pelling, 2011). All concepts of transformation rec-
Resilience

ognize that transformative processes are characterized by discontinuities, thresholds, or tipping points and do not generally proceed smoothly; therefore, these cycles or phases represent attempts to make sense (Westley et al., 2006) of the complex behavior of social-ecological systems rather than strictly defining features of transformation (Feola, 2015).

The resilience approach to transformations is less about planning and controlling and more about preparing for opportunity or creating conditions of opportunity for navigating the transformations (Chapin et al., 2010). The resilience approach allows the new identity of the social-ecological system to emerge through interactions of individuals, communities, and societies, and through their interplay with the biosphere within and across scales (e.g., Cumming & Collier, 2005; Folke et al., 2010; Sendzimir et al., 2008). It concerns encouraging arenas for safe-to-fail experimentation, facilitating different transformative experiments at small scales and allowing cross-learning and new initiatives to emerge and spread across levels and scales, constrained only by avoiding trajectories undesirable from a sustainability perspective, especially those with known or suspected thresholds that challenge the capacity of the biosphere to sustain societal development and human well-being (Biggs et al., 2015; Westley et al., 2011). Enhancing resilience of the new stability domain is part of the transformation strategy (Chapin et al., 2010). The transformability insights of resilience thinking have largely emerged from case studies of social-ecological systems and human behavior in the real world (e.g., Enfors, 2013; Gelcich et al., 2010; Marshall et al., 2012; Olsson et al., 2004, 2006, 2008; Sendzimir et al., 2008).

Resilience, whether for adaptability or transformability, operates and needs to be addressed across levels and scales (Gunderson & Holling, 2002). Shifting pathways or basins of attractions at one level or scale does not take place in a vacuum. Any transformation draws on resilience from multiple scales and diverse sources of actors, organizations, and institutions, recombining experience and knowledge, learning with change, turning crises into windows of opportunity, and allowing space for, or even governing transformations for innovative pathways in tune with the resilience of the biosphere (Folke et al., 2010). Hence, in addition to emergence, resilience thinking emphasizes that humanity is embedded within the biosphere and that any attempt that takes sustainability seriously will require sustainability transformations, with stewardship that operates in synergy with the biosphere foundation (Folke et al., 2011). Sustainability transformations seem to be necessary to achieve a just society that thrives within planetary boundaries and a biosphere resilient for humanity (O’Brien, 2012; Westley et al., 2011).

Resilience, Complex Adaptive Social-Ecological Systems, and Sustainability Science

To many, the resilience approach is a subset of sustainability science (e.g., Anderies et al., 2013; Takeuchi et al., 2014). Vulnerability research also has strong links to sustainability science (e.g., Turner, Kasperson, et al., 2003), and there are differences and similarities with resilience thinking (e.g., Miller et al., 2010; Turner, 2010). Sustainability science is
Resilience

defined by the problems it addresses rather than by the disciplines it employs. A core focus of sustainability science is on transitions toward sustainability, including improving society’s capacity to use the earth in ways that simultaneously meet the needs of a much larger but stabilizing human population, that sustain the life support systems of the planet, and that substantially reduce hunger and poverty (Clark, 2007; Matson et al., 2016).

Berkes and Folke (1998) started to use the concept of social-ecological systems as an integrated approach of *humans-in-nature* and related the concept to resilience. In this approach, the social refers to the human dimension of people, communities, societies in its diverse facets (e.g., economic, political, institutional, cultural), and the ecological to the biosphere—the thin layer around planet Earth where there is life, human life included. They pointed out that, in the social-ecological approach, the “the delineation between social and natural systems is artificial and arbitrary” (Berkes & Folke, 1998, p. 4). In essence, the social-ecological approach emphasizes that people, communities, economies, societies, and cultures are embedded parts of the biosphere and shape ecosystems, from local to global scales, from the past to the future. At the same time, people, communities, economies, societies, and cultures are fundamentally dependent on the capacity of the biosphere to sustain human development (Folke et al., 2011). It represents a *biosphere-based sustainability science* with resilience thinking as a central ingredient.

Baggio, Brown, and Hellebrandt (2015), in their citation network analysis of resilience, found that “the social-ecological systems field stands out as an emerging interdisciplinary arena where resilience can effectively act as a bridging concept and facilitate a discussion of dynamics of complex systems within varied contexts, informed by diverse perspectives, to provide potentially innovative theoretical and applied insights” (Baggio et al., 2015, p. 8).

Biggs et al. (2015) define resilience of a social-ecological system as the capacity of a social-ecological system to sustain human well-being in the face of change, both by buffering shocks and by adapting or transforming in response to change.

To understand the dynamics of intertwined social-ecological systems, taking into account that the very nature of systems changes over time (e.g., Carpenter, Brock, et al., 2015), complex adaptive systems come increasingly into focus (e.g., Holland, 1992; Levin, 1998; Norberg & Cumming, 2008). Social-ecological systems are complex adaptive systems. Complex adaptive systems possess critical thresholds, multiple drivers of change, and reciprocal feedbacks between social and ecological components (Levin et al., 2013).

Resilience and Complex Adaptive Social-Ecological Systems

Many recurring environmental and natural resource challenges tend to be reinforced by the lack of recognition that ecosystems and the social systems that use and depend on them are intimately linked (Biggs et al., 2015; Norgaard, 1994; Reyers et al., 2013; van der Leeuw & Aschan-Leygonie, 2005). It is the feedback loops amongst them, as interdependent social-ecological systems, that determine their overall dynamics (Bots et al., 2015; Carpenter, Brock, et al., 2015; Fischer et al., 2015; Folke et al., 2002, 2010; Os-
Resilience

trom, 2009). In fact, they have been linked for a long time (e.g., Ellis, 2015). Theoretical and empirical analyses show how intertwined social-ecological systems are more than the sum of the ecological or the social or their combination, and they provide new explanations of regime shifts and tipping points (e.g., Bodin & Tengö, 2012; Hentati-Sundberg et al., 2015; Lade et al., 2013, 2015; Liu et al., 2007).

The resilience approach, as part of understanding the complex systems (e.g., Cillier, 2008; Holland, 1995), emphasizes that systems of humans and nature exhibit non-linear dynamics, thresholds, uncertainty, and surprise, and in particular, how periods of gradual change interplay with periods of rapid change, and how such dynamics interact across temporal and spatial scales (e.g., Berkes et al., 2003; Gunderson & Holling, 2002). Complex systems have multiple attractors, and there may be shifts from one attractor on a certain pathway to a new attractor and a contrasting pathway (stability domain or basin of attraction). Sharp shifts take place in ecosystems that stand out of the blur of fluctuations around trends and that may have different causes (e.g., Scheffer, 2009; Scheffer & Carpenter, 2003). The likelihood of such shifts increases with loss of resilience (e.g., Scheffer et al., 2001). During the last decades, it has become clear that human actions cause such shifts by altering resilience and disturbances (e.g., Biggs, Blenckner, et al., 2012; Folke et al., 2004; Schoon & Cox, 2012), as illustrated by a growing set of examples of both ecosystems and social-ecological systems (Rocha et al., 2015), and even by large-scale reorganizations like historical shifts from foraging to farming (Ullaha et al., 2015).

The Regime Shifts DataBase provides examples of different types of regime shifts that have been documented. The database focuses specifically on regime shifts that have large impacts on ecosystem services and therefore on human well-being. Hence, in resilience thinking, social and ecological systems are intertwined, exhibiting emergent properties, and they can exist in qualitatively different states or basins of attraction.

Human as agents in social-ecological systems shape emergent structures in different ways based on their cultural systems. Geertz (1973) presents culture as a historically transmitted pattern of meanings embodied in symbols, a system of inherited conceptions expressed in symbolic forms by means of which humans communicate, perpetuate, and develop their knowledge about and their attitudes toward life. Cultural systems consist of concepts linked in complicated ways that can form consistent world views, can contain inconsistencies, and may or may not accurately model the properties of a social-ecological system. Consequently, human influence will differ, depending on cultural systems (Tropper, 2005). Deep cultural identities or cultural resilience may both constrain and be essential for adaptation or transformation (e.g., Rotarangi & Stephenson, 2014; Walker, Abel, et al., 2009; von Heland & Folke, 2014). The apparent stability and integrity of institutions and other social phenomena is not inherent, but an illusion created by the choice of a scale of observation that is shorter than the time over which the complex dynamics of the social-ecological system plays out (van der Leeuw & Aschan-Leygonie, 2005). Humans as agents operate in diverse social and cultural contexts that are all embedded part of the biosphere and that, consequently, will shape the biosphere in complex and different ways in continuous coevolution (e.g., Norgaard, 1994).
Resilience

In complex adaptive systems, agents interact and connect with each other often in unpredictable and unplanned ways, but from such interaction broader scale patterns with new properties emerge, which than feeds back on the system and influences the interactions of the agents (e.g., Lansing & Kremer, 1993; Levin et al., 2013). Hence, the properties of complex adaptive systems change because of the interplay between the adaptive responses of the parts and the emergent properties of the whole that then feed back to the parts (e.g., Levin et al., 2013). The resilience of individuals, groups and communities is tightly coupled to this interplay and the emergent properties of the whole.

Since complex adaptive systems portray radically disproportional causation (i.e., small causes do not always produce small effects) or nonlinearity, they may depict periodic and chaotic dynamics, multiple basins of attraction, and potentially irreversible regime shifts (e.g., Biggs et al., 2009; Biggs, Blenckner, et al., 2012; Norström et al., 2009). Multiple slow and fast drivers of change make it difficult to predict when such dramatic changes will occur and to pinpoint cause-and-effect mechanisms (e.g., Hughes et al., 2013; Scheffer et al., 2012). Living with such complexity and change is facilitated by collaborative and adaptive approaches to management and by governance of the biosphere with decision-making subject to high degrees of uncertainty and with continuous learning as an important feature (e.g., Folke et al., 2005; Ludwig et al., 2001).

Resilience of People or Planet in Development?

In resilience thinking and social-ecological systems research people are viewed as part of the planet, as part of the biosphere; consequently, development issues, whether for poverty alleviation, reduced inequality, or diverse aspects of power are embedded in a biosphere context. But it has to be stressed that even if a social-ecological systems may seem to be on a sustainable biosphere pathway for human well-being, actions to improve resilience on that pathway may benefit resilience of some and undermine resilience and increase vulnerability of others (e.g., Leach et al., 2010; Lebel et al., 2006). In contrast, actions aimed at increasing resilience in individuals, communities, and nations as the core focus may reinforce unsustainable pathways, undermine biosphere resilience, and challenge sustainability (e.g., Arrow et al., 1995; Westley et al., 2011). Determining when resilience is on a desirable or undesirable path, and for whom, is an inherently value-laden, subjective, and political question, a question that, if sustainability is in focus, needs to be connected to human well-being as part of the biosphere. From this perspective, sustainable development for humanity needs to be guided by approaches based on epistemologies and ontologies of development that appreciate the human-biosphere relationship.

Although on the table, issues of distribution, inequality, and diverse aspects of power and politics in their own right were not the core in the emergence of resilience thinking. Rather, they were incorporated as part of analyses of complex adaptive social-ecological systems, reflected in the abundant resilience work on agency, actors, participation, diverse knowledge systems, learning, coproduction, adaptive management, social networks, collective action, institutions, stewardship, social-ecological innovation, transformation, and multi-level and adaptive governance of social-ecological systems. Issues of in-
equality and diverse aspects of power and politics in social-ecological systems and sustainability are explicitly addressed through collaboration across knowledge domains and in the continuous evolution of resilience thinking (e.g., Boonstra, 2016; Crona & Bodin, 2010; Enfors, 2013; Fischer et al., 2015; Lebel et al., 2006; Michon, 2011; Raudsepp-Hearne, Peterson, & Bennett, 2010; Robards et al., 2011; Smith & Stirling, 2010; Stone-Jovicich, 2015). In this context, Brown (2016) argues that resilience can help understand and respond to the challenges of the contemporary age, challenges characterized by high uncertainty, globalized and interconnected systems, increasing disparities and limited choices.

Resilience is increasingly having an impact on development research, from the individual, to community, to society as a whole. Development research with a resilience connection is becoming abundant, theoretically and empirically (e.g., Béné et al., 2016; Hall & Lamont, 2013). For example, development resilience has been defined as “the capacity over time of a person, household, or other aggregate unit to avoid poverty in the face of various stressors and in the wake of myriad shocks. If and only if that capacity is and remains high over time, then the unit is resilient” (Barrett & Constas, 2014). The theory of development resilience approaches poverty dynamics of individuals in a way that makes the literature of economics and social science on poverty and poverty traps more explicit when considering issues of risk, dynamics, and appreciation of ecological feedback. This definition of resilience at the microscale puts the individual agents and their basic rights and aspirations for improved living conditions in focus.

There is work on poverty, adaptability, food security, social protection, adaptive capacity, and resilience of individuals, households, and groups in relation to ecosystem and environmental change in general, and climate change in particular (e.g., Andrew et al., 2007; Berkes & Jolly, 2001; Boyd et al., 2008; Cinner et al., 2015; Davies et al., 2013; Kelly & Adger, 2000; Marshall & Stokes, 2014; Nayak et al., 2014; Thomas & Twyman, 2005). For example, Béné, Headey, Haddad, and von Grebmer (2016) in their review of resilience in food security, nutrition, and development, employ the definition of resilience as used here (see above) in relation to short-term humanitarian interventions, climate change projects, and long-term development programs. They argue that resilience results from the combination of absorptive capacity leading to persistence, adaptive capacity, leading to incremental adjustments/changes and adaptation, and transformative capacity leading to transformational responses.

Community resilience has surfaced as a vibrant area (e.g., Amundsen, 2012; Berkes & Ross, 2013). For example, it has been found that communities can seize on the window of opportunity created by climate-induced shocks to generate sustained social-ecological improvement, implying that management should foster local capacities for endogenous institutional change to enhance community resilience to climate shocks (McSweeney & Coomes, 2011). Norris, Stevens, Pfefferbaum, and Wyche (2008), argue that community resilience emerges from four primary sets of adaptive capacities, namely economic development, social capital, information and communication, and community competence; as a whole, they help provide community capacity to deal with change, like disasters. Robards
and Alessa (2004) note that Arctic communities have maintained their existence over time by their ability to recognize gradual or rapid changes and to adapt to those, rather than to any specific outcomes of a change. Resilience as a dynamic concept is reflected in the definition of community resilience as the existence, development, and engagement of community resources by community members to thrive in an environment characterized by change, uncertainty, unpredictability, and surprise and adapt and occasionally transform (Margis, 2010). It is about planning for not having a plan, which requires flexibility, decision-making skills, and trusted sources of information that function in the face of unknowns (Norris et al., 2008). The cross-scale dimension of community and social resilience, and in relation to globalization processes, is gaining attention and striking the right “balances” between communities and their scalar interactions and dependencies on global economic processes is key for social-ecological resilience (e.g., Crona et al., 2015; Scholes et al., 2013; Wilson, 2012).

Brown and Westaway (2011) provide an excellent resilience review synthesizing knowledge on agency, adaptive capacity, and resilience across human development, well-being, and disasters literature to provide insights to support more integrated and human-centered approaches to understanding environmental change. They find first, that there has been a shift away from the notion that central concepts of resilience thinking—adaptive capacity, resilience, and well-being—can be objectively measured by a set of quantifiable indicators to a much more complex, nuanced view that understands them as comprising subjective, relational as well as objective aspects. Second, that there is a growing recognition that dynamic systems approaches—including ecological or social-ecological in its broadest sense—and cross-scale perspectives are necessary. Third, in the human development, well-being, and disasters fields, there is a move away from deficit models to ideas about assets and capacities (Brown & Westaway, 2011).

Brown (2016), in the recent book on resilience in development, argues that a resilience-based approach to development might radically transform responses to climate change, to the dilemmas of managing ecosystems, and to rural and urban poverty in the developing world. She elaborates the notion of everyday forms of resilience as part of a new development agenda with three core components: resistance, rootedness, and resourcefulness. Resistance puts concerns for politics and power at the heart of resilience, how new spaces for change can be opened up and how positive transformation might be shaped and mobilized. Rootedness is about locating culture and place, both as a biophysical environment and context and as identity and attachment, while also working at and across multiple scales. Resourcefulness concerns capacities, knowledge, innovation, and learning, and how resources can be accessed and used in response to change.

In a classic paper, Adger (2000) compares social and ecological resilience and defines social resilience as the ability of groups or communities to cope with external stresses and disturbances as a result of social, institutional, political, and environmental change. Hall and Lamont (2013) present a systems-oriented definition of social resilience that, very much like resilience thinking, emphasizes adaptation or transformation over return to an earlier state. They are interested, in general terms, in the understanding of how individu-
Resilience

als, communities, and societies secure their well-being in the face of its challenges, how well-being is secured by groups of people more or less bound together in an organization, class, group, community, or country. More specifically, they see social resilience in dynamic terms as the achievement of well-being even when that entails significant modifications to behavior or to the social frameworks that structure and give meaning to behavior. Well-being in this context refers broadly to physical and psychological health, material sustenance, and the sense of dignity and belonging that comes with being a recognized member of the community or society. Hence, in focus is the capacity of individuals or groups to secure favorable outcomes (material, symbolic, emotional) under new circumstances and, when necessary, by new means. Consequently, social resilience is used to denote an outcome in which members of a group sustain their well-being in the face of challenges to it (Hall & Lamont, 2013).

The additional argument from resilience thinking is that well-being of individuals, communities, and societies is tightly coupled to the capacity of the biosphere to sustain it. This is an obvious fact in a situation when the scale, connectivity, spread, and speed of human actions shape the dynamics of the biosphere and the earth system as a whole (e.g., Folke et al., 2011; Steffen et al., 2007, 2015; Turner et al., 1990).

Resilience and the Anthropocene

The scale of human actions and the speed, spread, and connectivity of globalization create new complex dynamics across levels and domains that play out in new ways (e.g., Biggs et al., 2011; Homer-Dixon et al., 2015; Walker, Barrett, et al., 2009; Young et al., 2006). Interconnections of humans in a globalized society can propagate and cascade across countries and regions (e.g., Adger et al., 2009; Eriksson et al., 2015; Galaz et al., 2011; Liu et al., 2013; Österblom et al., 2015), shaping landscapes, seascapes, the well-being of people and social-ecological systems worldwide (e.g., Berkes et al., 2006; Fairhead et al., 2012; Galaz, 2014; Holling, 1995; Hughes et al., 2003; Keys et al., 2016; Lazarus, 2014; Merrie et al., 2014). These interactions and feedbacks are not just global but cross-scale (e.g., Crona et al., 2015; Deutsch et al., 2007; Galaz et al., 2015; Lambin & Meyfroidt, 2011; Thyresson et al., 2011); the speed of them may even make the global operate faster than the local. It implies that studies and action of the local should not only focus on endogenous relations, but also account for and prepare for living with and collaborating with influences from other levels, be they political decisions, economic drivers, transnational companies, migration policies, altered rainfall patterns, or climate change (e.g., Folke et al., 2011; Rockström, Falkenmark, Folke, et al., 2014; Walker, Barrett, et al., 2009). Some of those may be slow creeping influences, others abrupt and surprising (e.g., Hansen et al., 2012; Homer-Dixon et al., 2015; Hughes et al., 2013). It is a truly intertwined social-ecological planet we are living on.

The great acceleration of the human dimension on earth, in terms of people and activities, and diverse reasons behind it from the discovery of fossil fuels to power dynamics between nations and regions, has placed humanity in a new terrain as a major force in
Resilience shaping biosphere processes. This scale increase in relation to the life-supporting biosphere (e.g., Arrow et al., 1995; Boulding, 1966; Daily & Ehrlich, 1992; Odum, 1989) has moved humanity into a proposed new geological era—the Anthropocene—the age of man (Brondizio et al., 2016; Steffen et al., 2007). Resilience and regime shifts are part of the challenges humanity is facing in the Anthropocene, from regional tipping points (e.g., Lenton et al., 2008; Österblom & Folke, 2015) to possible shifts at planetary scales (e.g., Barnosky et al., 2012; Steffen et al., 2011) and assessments of dynamic planetary boundaries in this context (Rockström et al., 2009; Steffen et al., 2015). It has been suggested that to sustain the planet in a Holocene-like state (the geological era of the last 11 thousand years of favorable condition for development of human civilizations), transformations at local and regional scales will be needed (e.g., Steffen et al., 2015). In other words, to sustain resilience of favorable biosphere conditions for humanity as a whole, there will have to be transformations toward new ways of development, not just incremental tweaking of business as usual on current development pathways (e.g., Folke et al., 2010; Westley et al., 2011). Views on good or bad pathways of transformations differ and often depend on values and political positions on issues like globalization, power inequalities, and distribution conflicts of development, uneven environmental degradation included (e.g., Hornborg et al., 2007). A resilience approach would emphasize flexibility and opportunity of diverse pathways, and keeping options open to be able to shift between those, in a manner that remains within the safe operating space of the biosphere, and with prosperity and abundance for humans in collaboration with biosphere resilience.

Capturing Resilience

Resilience as an approach for analyzing, understanding, and managing change in socio-ecological systems is different from resilience as a property of a social-ecological system (e.g., Biggs et al., 2015; Nelson et al., 2007). Resilience as a system property is, as discussed earlier, the capacity of a specific social-ecological system to continually self-organize and adapt in the face of ongoing change in a way that sustains the system in a certain stability domain or development path. When analysing resilience as a system property in relation to regime shifts it is useful to consider resilience of what to what (Carpenter et al., 2001). Biggs, Schlüter, and Schoon (2015) see resilience as the capacity of a social-ecological system to sustain human well-being in the face of change, by persisting and adapting or transforming in response to change. A central challenge is this context is the capacity of socio-ecological systems to continue to provide key ecosystem services that underpin human well-being in the face of unexpected shocks as well as gradual, on-going change (e.g., Bennett et al., 2009; Biggs et al., 2015; Carpenter, Mooney, et al., 2009).

How can resilience as a property be captured? There is search for metrics and indicators of resilience, not an easy task since social-ecological systems are complex adaptive systems, moving targets continuously developing and evolving. It is important to avoid the trap of developing metrics of what is easy to measure rather than what is important (Carpenter, Folke, et al., 2009). Developing a set of indicators of resilience as a system property may block the deeper understanding of system dynamics needed to apply resilience thinking and navigate a turbulent world (e.g., Quinlan et al., 2015). Therefore, resilience
as a system property should not be reduced to a simple metric, but different types of metrics and indicators need to be used and combined to capture facets of resilience and help guide management and governance. A snapshot of approaches is presented below.

In recent years, progress has been made in understanding signals of regime shifts and critical transitions. Resilience research has clarified how phenomena such as flickering, critical slowing down, increased autocorrelation, decreasing recovery rates, and increased variance can serve as “early warnings” of loss of resilience and of regime shifts in nature, from ecosystems to the dynamics of the planet as a whole (e.g., Dakos et al., 2008; Scheffer et al., 2012), and how such signals relate to management, human behavior, and the safe-operating spaces of ecosystem regimes (e.g., Biggs et al., 2009; Crepin et al., 2012; Scheffer et al., 2015; Schill et al., 2015). The safe-operating space was proposed in relation to zones of uncertainty with potential thresholds of critical processes at the global level, or planetary boundaries, where loss of resilience and regime shifts may challenge essential favorable conditions for human life on earth (Rockström et al., 2009).

Several studies aim at developing resilience indicators in relation to regime shifts in diverse ecosystems, often with a focus on the interplay of fast and slow variables and feedback management (e.g., Carpenter et al., 2001; Nyström et al., 2008; Nyström et al., 2012; Graham et al., 2013; Jouffray et al., 2015), and how those are connected in dynamic landscapes and seascapes and across scales, as in spatial resilience (e.g., Bengtsson et al., 2003; Cumming, 2011; Nyström and Folke, 2001; Sundström et al., 2014) or with broader processes like rainfall patterns (Gordon et al., 2008; Keys et al., 2012) or fisheries and global seabird populations (Cury et al., 2011). There are efforts aimed at capturing resilience in economic terms and models in relation to regime shifts (e.g., Crepin et al., 2012; de Zeeuw, 2014; Mäler and Li, 2010; Polasky, de Zeeuw, & Wagener, 2011; Richter and Dakos, 2015; Walker et al., 2010).

Others are developing metrics of change in ecosystem services and natural capital in relation to social-ecological systems and human well-being, with connections to resilience (e.g., Guerry et al., 2015; Raudsepp-Hearne, Peterson, Tengö, et al., 2010) Some focus on measuring resilience at the individual level, and often in relation to poverty (e.g., Barrett & Constanas, 2014), or on understanding how communities can transform out of poverty traps (e.g., Enfors, 2013) or how to break resilience of one development path and transform to another and build resilience on that path (e.g., Moore et al., 2014). Turning crises into windows of opportunity, and aligning actors and networks across multilayers of governance at critical moments, seem to be significant in such social-ecological regime shifts (e.g., Chapin et al., 2010; Olsson et al., 2004; Schultz et al., 2015).

There are those who concentrate on adaptation and adaptive capacity in relation to change with links to resilience thinking (e.g., Wise et al., 2014), and there have been attempts to identify surrogates for resilience (e.g., Carpenter et al., 2005) as well as sources of resilience (e.g., Adger, Hughes, et al., 2005; Adger et al., 2011; Goulden et al., 2013). The latter concept is closely related to the theoretical concept of “remember” for reorganization (Gunderson & Holling, 2002), which has inspired studies on social-ecologi-
Resilience

cal memory as critical for building resilience, as well as the role of biocultural refugia as pockets of social-ecological memory in times of change (Barthel et al., 2010, 2013; Barthel & Isendahl, 2013). The role of memory and sources of resilience are addressed in work on cultural landscapes and with links to sense-of-place and deep identities as resilience features in adaptations and transformations (e.g., Adger et al., 2013; Crane, 2010; Fernandez-Gimenez, 2015; Lyon, 2014; Plieninger & Bieling; 2012; Tidball et al., 2000; Tidball & Stedman, 2012; Turner, Davidson-Hunt, & O’Flaherty, 2003). There is work on cultural resilience, often in relation to indigenous groups and cultures subject to change, emphasizing elements (e.g., resilience pivots, ancestral contracts) of a social-ecological system that endure despite adaptation or even transformation of other elements and in doing so support the persistence of the system’s distinctive identity (e.g., Forbes, 2013; Rotarangi & Stephenson, 2014; von Heland & Folke, 2014).

Another critical feature concerns the role of functional biodiversity and functional groups of species in ecosystem resilience and regime shifts (e.g., Bellwood et al., 2004; Folke et al., 2004; Hughes et al., 2007; Peterson et al., 1998; Walker et al., 1999), as well as the role of agency and diverse actors and actor groups in social-ecological system dynamics and their adaptations and transformations (e.g., Folke et al., 2003, 2005; Westley et al., 2013) as functional diversity and social actor strategies are increasingly linked (e.g., Diaz et al., 2011). A critical concept for resilience management in this context is response diversity, defined as the diversity of responses to environmental change among species contributing to the same ecosystem function (Elmqvist et al., 2003). Response diversity has been found to be particularly important for renewal and reorganization in ecosystems following change (e.g., Hughes et al., 2007; Jansson & Polasky, 2010; Laliberte et al., 2010; Winfree & Kremen, 2009). The concept is gaining interest in research on social-ecological systems, including livelihood options, across multiple levels (e.g., Leslie & McCabe, 2013) and in governance and management of urban landscapes and ecosystem services (e.g., Andersson et al., 2007; Colding, 2007).

There will always be tension between the degree of simplification that measurement and metrics demand and the point at which these make the system understanding fragmented and their implementation meaningful (Quinlan et al., 2015). Resilience assessments aim at a deep understanding of social-ecological system dynamics, recognizing that resilience is a dynamic property shaped by many different processes of interacting fast and slow variables, including the larger context and cross-scale dynamics in which the social-ecological system is embedded (e.g., Scholes et al., 2013) as well as unintentional changes of unforeseen dynamics (e.g., Quinlan et al., 2015). Building on a theoretical foundation and case study history, resilience assessments offer guidance toward understanding the social-ecological dynamics of a given place and time with the objective to inform management (e.g., Mitchell et al., 2014; Walker & Salt, 2012). The practice of resilience assessments has illustrated the value of a shared process of learning and understanding complex social-ecological systems dynamics (Quinlan et al., 2015). Resilience assessments have been tested and applied in a number of settings, like catchment and mountain management in Australia and the United States, municipalities and urban areas in Canada and Sweden, or pasture management in Afghanistan (e.g., Haider et al., 2012; Liu, 2014;
Resilience

Lockwood et al., 2014; Nemec et al., 2013; Sellberg et al., 2015; Walker, Abel et al., 2009). An updated framework based on the Resilience Alliance’s Workbook for practitioners (Resilience Alliance, 2010), originally developed by Lance Gunderson, Ann Kinzig, Allyson Quinlan, and Brian Walker, combines the focus on understanding complex adaptive social-ecological systems in the new Anthropocene context with guidance on the identification and use of indicators to measure and monitor over time (O’Connell et al., 2015).

Resilience and Stewardship of Social-Ecological Systems: From the Local to the Global

Urbanization is a major driver of the Anthropocene (e.g., Seto et al., 2012), with well over half of the human population currently living in urban areas. There is a tendency to become mentally disconnected from the biosphere in urban settings (e.g., Gomez-Baggethun & Barton, 2013). There is lot of work on urban resilience (e.g., Andersson, 2006; Elmqvist et al., 2013; Leichenko, 2011; Marcus & Colding, 2014; Pickett et al., 2004; Pu & Qiu, 2016). Green spaces and their stewards and stewardship is an exciting area of resilience research in urban social-ecological systems (e.g., Andersson et al., 2007; Colding, 2007; Colding & Barthel, 2013; Colding et al., 2006; Connolly et al., 2014; Ernstron et al., 2008; Wilkinson, 2012; Wilkinson et al., 2010), often with emphasis on how to reconnect people in cities and urban development to the biosphere and essential ecosystem services in relation to resilience (e.g., Andersson et al., 2014; Gomez-Baggethun & Barton, 2013; Jansson, 2013; McPhearson et al., 2015).

In the globally intertwined social-ecological system, everyone is everyone else’s backyard, and cities both shape and are dependent on huge areas across the planet for ecosystem support (e.g., Grimm et al., 2008; Folke et al., 1997), for water, food, and other ecosystem services (e.g., Bennett et al., 2014; Rist et al., 2014; Rockström, Falkenmark, Allan, et al., 2014; Troell et al., 2014). It will be in the self-interest of urban dwellers in the Anthropocene to create incentives for stewardship of their supporting ecosystems, or social-ecological systems often far away from city borders and that secure the basis of city life.

The stewardship challenge is of central focus in resilience thinking (e.g., Chapin et al., 2009; Folke et al., 2003; and see Fig. 2), from early work on adaptive management to regime shifts and adaptive governance of social-ecological systems and ecosystem services. Ecosystem services are a key emergent outcome of social-ecological interactions (e.g., Reyers et al., 2013; von Heland & Folke, 2014). But, the stewardship challenge makes clear that, although people’s management is critical, it is not sufficient to focus only on the human dimension if sustainability is central, since sustainability requires governance systems and development practices in tune with biosphere capacity (e.g., Guerry et al., 2015; Folke et al., 2011). Therefore, ecological knowledge and understanding of ecosystem processes and dynamics, of the natural capital, and the social-ecological interplay of such processes and dynamics is a prerequisite in this context (e.g., Berkes et al., 2003; Berkes & Folke, 1998). Skill sets for stewardship of natural capital range from abilities of experimenting, learning and gaining ecological knowledge and experience on the
ground (e.g., Chapin et al., 2009; King, 2008; Olsson et al., 2004) to capturing and accounting for broader scale biophysical processes like rainfall patterns or climate dynamics (e.g., Keys et al., 2012; Rockström, Falkenmark, Folke, et al., 2014) in the governance and management of social-ecological systems. Supported by proper institutions and incentives such skills help build identity, meaning, pride and dignity in being a steward of the ecological foundation for human well-being in collaboration with the biosphere.

Work on distribution, equality, fairness, justice, and power are of major significance in the resilience and stewardship context, but seldom the core focus in their own right. They enter resilience thinking as significant features of understanding and governing social-ecological dynamics for biosphere stewardship, human well-being, and sustainability (e.g., Fischer et al., 2015; Lebel et al., 2006; Robards et al., 2011).

The challenge of biosphere stewardship and resilience was raised in the Millennium Ecosystem Assessment and through the engagement of resilience-oriented scholars in the development of the assessment, especially in the case studies of the sub-global assessment as well as the scenarios work (e.g., Capistrano et al., 2006; Reid et al., 2006). Here, the role of people as part of ecosystem dynamics and stewardship of dynamic landscapes and seascapes and their ecosystem services were in the forefront as was the challenge of bringing in diverse knowledge systems as part of stewardship and governance across institutions at multiple levels (Carpenter, Mooney, et al., 2009).

There is a lot of work on management of ecosystem resilience for ecosystem services (e.g., Moberg & Folke, 1999; Scheffer et al., 2015), with adaptive management as a way of experimenting, learning, and developing understanding for stewardship (e.g., Allen et
Resilience work has studied institutions and governance structures that allow for ecosystem-based management in some detail and has focused especially on the emergence of flexible governance arrangements that have shifted and transformed human activities towards adaptive governance of social-ecological systems (e.g., Folke et al., 2005; Chaffin et al., 2014; Huijema et al., 2009; Karpouzoglou et al., 2016). This work has been particularly well developed as regards the stewardship of landscapes and seascapes (e.g., Cosens & Williams, 2012; Gelcich et al., 2010; Olsson et al., 2004, 2006, 2008). Several studies illustrate the role of institutional entrepreneurs in this context (e.g., Ernstson et al., 2010; Folke et al., 2005; Meijerink & Huijema, 2010; Merrie & Olsson, 2014; Rosén & Olsson, 2013; Westley et al., 2013). In these situations, actors start interacting and connecting with each other, often in unpredictable and unplanned ways, and from such interactions broader scale patterns with new properties emerge, which than feedback on the social-ecological system and influence the actors and their interactions (Levin et al., 2013). Such a dynamic interplay of actors, social networks, bridging organizations, and diverse and multilevel institutions—continuously learning with change—are found to be significant features of social-ecological system dynamics, often emerging in relation to crisis (perceived or real) and opening windows of opportunity for change towards stewardship of ecosystem services (e.g., Bodin & Crona, 2009; Crona & Parker, 2012; Hahn et al., 2006; Olsson et al., 2004, 2008; Österblom & Folke, 2013; Pahl-Wostl et al., 2007; Rathwell & Peterson, 2012; Schultz et al., 2015). Such “adaptive waves” of moving up scales of social-ecological systems occur both inadvertently and deliberately in response to both rapid and gradual changes and may lead to increased resilience on a higher governance scale (e.g., Luthe & Wyss, 2015; Olsson et al., 2007).

However, restructuring current institutions and governance systems for resilience is no small task and the challenge in relation to social-ecological systems and resilience is subject to a growing literature (e.g., Dietz et al., 2003; Schlüter & Herrfahrdt-Pähle, 2011; Sjöstedt, 2015; Young, 2010, 2011). Such restructuring raises issues of representative democracy, accountability, and legitimacy in governance (e.g., Cosens, 2013; Hahn, 2011). There is also the problem of fit between institutions, governance, and social-ecological
Resilience

systems (e.g., Galaz et al., 2008; Ekstrom & Young, 2009; Treml et al., 2015) and how institutions and governance systems can handle change and stability simultaneously (e.g., Duit et al., 2010; Green et al., 2013; Voss & Bornemann, 2011) including cascading changes of an intertwined world (e.g., Galaz et al., 2011). Global governance challenges are raised in relation to planetary boundaries and stewardship (e.g., Biermann et al., 2012; Galaz, Biermann, et al., 2012) and the emergence of new forms of institutions for governance of the biosphere (e.g., Galaz, Crona, et al., 2012).

There is also work on resilience in relation to legal structures, principles, and processes (e.g., Garmestani et al., 2013), as well as core concepts of the rule of law (e.g., Ebbesson, 2010) and the making of normative choices of public interest, public and private responsibilities, and individual rights, including equality before the law and non-discrimination (e.g., Ebbesson & Hey, 2013). West and Schultz (2015) conclude that the European Court of Human Rights constitutes an important site of learning for governance of social-ecological systems, because it situates knowledge and experience of environmental change in the context of discussions about the relative rights, duties, and responsibilities of social actors, facilitating the mutually adaptive evolution of truth and justice across scales. Work on new forms of social contracts, emphasizing the dynamics, links, and complexity of social-ecological systems is also part of the resilience discourse (O’Brien et al., 2009). As stated by Cosens (2013), the recognition of the complexity in the social-ecological system, coupled with a growing realization of the complete dependence of the human race on the ability of the ecological system to serve it, requires reform of the administrative state to allow society to responsibly respond to the challenge of managing human interaction with ecosystems.

Scenario planning is a forward looking approach that aims to articulate multiple alternative futures in a way that spans a key set of critical uncertainties, using qualitative and quantitative methods and data (e.g., Carpenter et al., 2006; Peterson, Cumming, & Carpenter, 2003; Swart et al., 2004) and engaging diverse stakeholder in participatory processes for stewardship of social-ecological systems subject to change (e.g., Enfors et al., 2008; Carpenter, Booth, et al., 2015; Oteros-Rozas et al., 2015; Plieninger et al., 2013). Scenario work is an important part of the Future Earth Programme on Ecosystem Change and Society (PECS), a program with a strong focus on social-ecological systems, resilience, and stewardship of ecosystem services in dynamic landscapes and seascapes, operating in the context of the challenges of the Anthropocene (Carpenter, Folke, et al., 2012; Fischer et al., 2015).

Expect the Unexpected

In their article, “Expecting the Unexpected,” Kates and Clark (1996) make clear that in a complex and intertwined world, surprise is to be expected. Resilience thinking has been characterized as the science of surprise. Surprise—when perceived reality departs qualitatively from expectation—is strongly shaped by underlying metaphors, models, and belief systems (Holling, 1986).
Surprise is not just about shocks and extreme events but also about slower changing and less visible dynamics (e.g., Gunderson, 2001). We are not always aware of the sands shifting beneath our feet as events change the character of the times in diffuse ways (Hall & Lamont, 2013). Resilience thinking is about the interplay of incremental and abrupt change, of slow and fast variables in complex adaptive systems and how it plays out in uncertain, surprising and often unpredictable ways (e.g., Carpenter, Folke, et al., 2009; Gunderson & Holling, 2002). Resilience thinking is about true uncertainty and unknown unknowns and not just about probabilities around risk and uncertainty (Carpenter et al., 2006; Carpenter, Folke, et al., 2009; Polasky, Carpenter, et al., 2011).

As suggested by Holling (1986), contemporary challenges of the globally intertwined social-ecological systems are indeed system challenges, complex, unpredictable, nonlinear, with discontinuous behavior in space and time, and where causes, at times simple, are always multiple. The cross-scale challenges are a reflection of decadal to centurial accumulation of human influences on air and oceans and transformations of landscapes, causing sudden changes in fast environmental variables, and affecting the health of people, the vitality of societies, and the essential life-support functions of the biosphere (e.g., Clark & Munn, 1986; Gunderson et al., 1995). Indeed, the complex interplay of human actions shaping biosphere capacity has placed humanity in a novel situation of interactions of social-ecological systems across scales that are expressed in new, intertwined, and often turbulent and surprising ways (e.g., Biggs et al., 2011; Galaz et al., 2011; Homer-Dixon et al., 2015; Steffen et al., 2009; Walker, Barrett, et al., 2009), affecting people and places in disparate ways. The situation presents major challenges and opportunities for adaptation and transformation (e.g., Adger et al., 2011; Biermann et al., 2012; Galaz, Crona, et al., 2012; Hill & Engle, 2013; Westley et al., 2011).

Solutions that focus on knowledge of small parts or that assume constancy or stability of fundamental relationships, tend to be pathological, producing policy and science with a sense of certainty leading to rigid and unseeing institutions and increasingly vulnerable social-ecological systems (Gunderson et al., 1995; Holling, 1986; Holling & Meffe, 1996). It may even be possible that recent advances and widespread availability of information may make people overconfident about the ability to anticipate and deal with surprise, thereby making people more vulnerable to it (Kates & Clark, 1996). The challenge is to anticipate change and surprise in a manner that does not lead to lock-in and loss of future options (e.g., Berkes et al., 2003; Boyd et al., 2015; Costanza et al., 2000).

Managing for resilience enhances the likelihood of sustaining development in a rapidly changing world where surprise is likely (e.g., Carpenter, Folke, et al., 2009; Chapin et al., 2009; Folke, 2006). When transformation is inevitable, resilient social-ecological systems contain the components needed for renewal and reorganization, reconnecting development to the biosphere for human well-being and sustainability (e.g., Boyd & Folke, 2012; Biggs et al., 2015; Folke et al., 2002).

Resilience-building management of the Anthropocene is flexible and open to learning. It attends to slowly changing, fundamental variables that create memory, legacy, diversity,
and the capacity to innovate in both social and ecological components of the system. It also conserves, builds experience, and nurtures the diverse elements that are necessary to reorganize and adapt to novel, unexpected, and transformative circumstances. Thus, it increases the range of surprises with which a social-ecological system can cope (Folke et al., 2002) and may even serve to open windows-of-opportunity for societies to increase capacity to govern social-ecological change over the long-term (e.g., Kates & Clark, 1996; Luthe & Wyss, 2015).

Often, resilience is applied to challenges relating to particular aspects of a social-ecological system that might arise from a particular set of sources or shocks, referred to as specified resilience (Walker, Abel, et al., 2009). Specified resilience arises in response to the question “resilience of what to what?” (Carpenter et al., 2001) and for “whom” (e.g., Lebel et al., 2006). Becoming too focused on specified resilience to increase resilience of particular parts or dimensions of a social-ecological system to specific disturbances may cause the system to lose resilience in other ways. This observation is critical for e.g., disaster management or policies aimed at poverty alleviation (e.g., Berkes, 2007; Djalante et al., 2013). For example, the Pumpsa social-ecological system of rice-paddy irrigation in Nepal developed into a socially well-tuned institution for dealing with specific fluctuations of climate and hydrology, but in the process the governance structure for water management created vulnerability to long-term changes in climate and institutional arrangements (Cifdaloz et al., 2010).

In fact, it seem like governance and management aimed at reducing variance in flows of ecosystem services will lead to loss of resilience in social-ecological systems to changing conditions (Carpenter, Brock, et al., 2015). Hence, there are trade-offs between resilience of a social-ecological system to a small set of known kinds of disturbance versus the vast universe of unknown novel shocks (e.g., Carpenter, Folke, et al., 2009). Specified resilience approaches may be narrowing options for dealing with novel shocks and even increasing the likelihood of new kinds of instability (Carpenter, Brock, et al., 2015). It seems like systems that become very robust to frequent kinds of disturbance necessarily become fragile in relation to infrequent kinds (e.g., Anderies, 2015; Folke et al., 2010).

Enhancing Resilience in General

General resilience is a more broad-spectrum type of resilience for building capacity of social-ecological systems to adapt or transform in response to the unknown. It is about resilience to all kinds of shocks, including extreme, novel and non-computable ones (e.g., Carpenter, Folke, et al., 2009). Among conditions that enable general resilience are diversity, modularity, openness, reserves, feedbacks, nestedness, monitoring, leadership, and, trust (Carpenter, Arrow, et al., 2012). General resilience is about having the capacity to deal with ongoing diffuse gradual change, with true uncertainty and surprise. General resilience envisions a central role in buying insurance against surprises generated by complex intertwined social-ecological systems of the Anthropocene. But, as a public good it has a cost. How much general resilience is needed, in what dimensions, and how can
long-term practices be woven into actions that also meet the immediate needs of people and ecosystems?

Based on empirical work and case studies, Folke, Colding, and Berkes (2003) proposed four key features of general resilience-building for adaptive capacity, features that interact across temporal and spatial scales and that seem significant for dealing with dynamics in social-ecological systems:

- Learn to live with change and uncertainty;
- Nurture diversity for reorganization and renewal;
- Combine different types of knowledge for learning; and
- Create opportunity for self-organization towards social-ecological sustainability.

The first emphasizes the significance of accepting uncertainty and surprise, taking advantage of change and crisis and having the capacity of turning change into opportunity for social-ecological development in tune with the biosphere. The second illuminates the importance of nurturing diversity for social-ecological resilience, recognizing that diversity is more than insurance against uncertainty and surprise. It also provides the bundle of components, and their history, that makes development and innovation following disturbance and crisis possible, components that are embedded in the social-ecological memory. The third is about the significance of peoples’ knowledge, experience and understanding about ecosystem dynamics and their inclusion in management practice and institutions. The forth brings these issues together in the context of self-organization, scale, governance, and external drivers, stressing the significance of the dynamic interplay between diversity and disturbance (Folke et al., 2003).

Biggs, Schlüter, et al. (2012, 2015) have identified a set of seven generic and policy-relevant principles for enhancing resilience of critical ecosystem services for human well-being in the face of disturbance and ongoing change in complex social-ecological systems. These principles are: (P1) maintain diversity and redundancy, (P2) manage connectivity, (P3) manage slow variables and feedbacks, (P4) foster an understanding of SES as complex adaptive systems (CAS), (P5) encourage learning and experimentation, (P6) broaden participation, and (P7) promote polycentric governance systems. Quinlan et al. (2015) divided the principles along two axes by whether they focus primarily on the resilience of a social-ecological system or its governance, and by whether they focus on resilience based on system structure or its dynamics, strategies that are complementary and can be combined (Figure 3).
Briefly summarized, the principles stress that (P1) high levels of diversity and redundancy, but not too high levels, tend to make social-ecological systems more resilient to change and provide options and flexibility for development; that (P2) connectivity needs to be managed for sources of resilience, for trust in networks, for new information etc., but that there is a tension between too much connectivity versus modularity in complex social-ecological systems operating across levels and scales; that (P3) where known, changes in slow variables and feedbacks should be monitored with governance systems that can respond in a timely manner and those supporting biosphere stewardship for ecosystem services and human well-being should be strengthened; that (P4) fostering complex adaptive system thinking entails uncertainty-tolerant cultures investigating potential non-linearities and thresholds, allowing for diverse knowledge and matching institutions and governance to complex adaptive system processes; that (P5) encouraging learning through experimentation and monitoring is essential for enabling adaptive responses; and it requires social capital, such that (P6) participation, and how it takes place, is facilitated, and the skills involved are key for learning, building social capital and collective action; and finally, that (P7) polycentricity of governance enables the other resilience enhancing principles. Their implementation involves clarification of goals and developing and monitoring relevant metrics for each principle, taking an integrative approach that builds on multiple knowledge systems, shifting away from exclusively managing for efficiency towards planning for uncertainty and surprise, creating spaces for spontaneous exploration, and building trust and social capital (Biggs et al., 2015).

Such principles, whether for resilience building, collective action dilemmas (e.g., Ostrom, 1990) or adaptive governance (e.g., Folke et al., 2005), should not be approached as end goals but rather as processes or mechanisms for generating conditions that allow for resolving collective-action challenges associated with multiple trade-offs in complex social-ecological systems. Such principles challenge the presumption that scholars can make simple, predictive models of social-ecological systems and deduce universal solutions, panaceas, to implement a certain principle (e.g., Biggs et al., 2015; Clarvis et al., 2015; Holling et al., 1998; Ostrom, 2007; Pahl-Wostl et al., 2012). Rather, they support reflection, learning and adaptation in search, for deep understanding of complex, multivari-
Concluding Remarks

Resilience thinking is an integrative approach for dealing with the sustainability challenge. It is about cultivating the capacity to sustain development in the face of change, incremental and abrupt, expected and surprising, in relation to diverse pathways and thresholds and tipping points between them. Resilience thinking can be viewed as a subset of sustainability science and has a strong focus on complex adaptive and truly intertwined social-ecological systems of people, communities, economies, societies, and cultures interacting across spatial and temporal scales with ecosystems as part of the biosphere. The scale, speed, and connectivity of human actions in a globalized and intertwined world create new complex dynamics that play out in new, uncertain, and surprising ways, and differently for different people and places. Resilience of a social-ecological system refers to the capacity to develop and sustain human well-being in diverse contexts in the face of such change, both incremental and abrupt, but also through adapting or transforming in response to change.

Social-ecological systems are embedded in the biosphere. The biosphere connection is a central observation of resilience thinking, an observation that has to be explicit in work on resilience and social-ecological systems if sustainability is to be taken seriously. Confronted with planetary boundaries, it will become central for human well-being in the urbanized 21st century to create incentives for transformation of human actions towards stewardship of complex adaptive social-ecological systems in ways that are in tune with the resilience of the biosphere. Well-being and development ultimately rests on biosphere capacity.

Suggested Readings

Resilience

Resilience

References

Resilience

Page 59 of 60
PRINTED FROM the OXFORD RESEARCH ENCYCLOPEDIA, ENVIRONMENTAL SCIENCE (oxfordre.com/environmentalscience) (c) Oxford University Press USA, 2019. All Rights Reserved. Personal use only; commercial use is strictly prohibited (for details see Privacy Policy and Legal Notice).
date: 25 September 2019

Carl Folke
The Beijer Institute of Ecological Economics, Royal Swedish Academy of Sciences; Stockholm Resilience Centre, Stockholm University