1-4 of 4 Results  for:

  • Computational Linguistics x
Clear all


Katrin Erk

Computational semantics performs automatic meaning analysis of natural language. Research in computational semantics designs meaning representations and develops mechanisms for automatically assigning those representations and reasoning over them. Computational semantics is not a single monolithic task but consists of many subtasks, including word sense disambiguation, multi-word expression analysis, semantic role labeling, the construction of sentence semantic structure, coreference resolution, and the automatic induction of semantic information from data. The development of manually constructed resources has been vastly important in driving the field forward. Examples include WordNet, PropBank, FrameNet, VerbNet, and TimeBank. These resources specify the linguistic structures to be targeted in automatic analysis, and they provide high-quality human-generated data that can be used to train machine learning systems. Supervised machine learning based on manually constructed resources is a widely used technique. A second core strand has been the induction of lexical knowledge from text data. For example, words can be represented through the contexts in which they appear (called distributional vectors or embeddings), such that semantically similar words have similar representations. Or semantic relations between words can be inferred from patterns of words that link them. Wide-coverage semantic analysis always needs more data, both lexical knowledge and world knowledge, and automatic induction at least alleviates the problem. Compositionality is a third core theme: the systematic construction of structural meaning representations of larger expressions from the meaning representations of their parts. The representations typically use logics of varying expressivity, which makes them well suited to performing automatic inferences with theorem provers. Manual specification and automatic acquisition of knowledge are closely intertwined. Manually created resources are automatically extended or merged. The automatic induction of semantic information is guided and constrained by manually specified information, which is much more reliable. And for restricted domains, the construction of logical representations is learned from data. It is at the intersection of manual specification and machine learning that some of the current larger questions of computational semantics are located. For instance, should we build general-purpose semantic representations, or is lexical knowledge simply too domain-specific, and would we be better off learning task-specific representations every time? When performing inference, is it more beneficial to have the solid ground of a human-generated ontology, or is it better to reason directly with text snippets for more fine-grained and gradual inference? Do we obtain a better and deeper semantic analysis as we use better and deeper manually specified linguistic knowledge, or is the future in powerful learning paradigms that learn to carry out an entire task from natural language input and output alone, without pre-specified linguistic knowledge?


Knut Tarald Taraldsen

This article presents different types of generative grammar that can be used as models of natural languages focusing on a small subset of all the systems that have been devised. The central idea behind generative grammar may be rendered in the words of Richard Montague: “I reject the contention that an important theoretical difference exists between formal and natural languages” (“Universal Grammar,” Theoria, 36 [1970], 373–398).


Annie Zaenen

Hearers and readers make inferences on the basis of what they hear or read. These inferences are partly determined by the linguistic form that the writer or speaker chooses to give to her utterance. The inferences can be about the state of the world that the speaker or writer wants the hearer or reader to conclude are pertinent, or they can be about the attitude of the speaker or writer vis-à-vis this state of affairs. The attention here goes to the inferences of the first type. Research in semantics and pragmatics has isolated a number of linguistic phenomena that make specific contributions to the process of inference. Broadly, entailments of asserted material, presuppositions (e.g., factive constructions), and invited inferences (especially scalar implicatures) can be distinguished. While we make these inferences all the time, they have been studied piecemeal only in theoretical linguistics. When attempts are made to build natural language understanding systems, the need for a more systematic and wholesale approach to the problem is felt. Some of the approaches developed in Natural Language Processing are based on linguistic insights, whereas others use methods that do not require (full) semantic analysis. In this article, I give an overview of the main linguistic issues and of a variety of computational approaches, especially those stimulated by the RTE challenges first proposed in 2004.


Stergios Chatzikyriakidis and Robin Cooper

Type theory is a regime for classifying objects (including events) into categories called types. It was originally designed in order to overcome problems relating to the foundations of mathematics relating to Russell’s paradox. It has made an immense contribution to the study of logic and computer science and has also played a central role in formal semantics for natural languages since the initial work of Richard Montague building on the typed λ-calculus. More recently, type theories following in the tradition created by Per Martin-Löf have presented an important alternative to Montague’s type theory for semantic analysis. These more modern type theories yield a rich collection of types which take on a role of representing semantic content rather than simply structuring the universe in order to avoid paradoxes.