1-2 of 2 Results  for:

  • Applied Linguistics x
  • Cognitive Science x
Clear all

Article

Humor in Language  

Salvatore Attardo

Interest in the linguistics of humor is widespread and dates since classical times. Several theoretical models have been proposed to describe and explain the function of humor in language. The most widely adopted one, the semantic-script theory of humor, was presented by Victor Raskin, in 1985. Its expansion, to incorporate a broader gamut of information, is known as the General Theory of Verbal Humor. Other approaches are emerging, especially in cognitive and corpus linguistics. Within applied linguistics, the predominant approach is analysis of conversation and discourse, with a focus on the disparate functions of humor in conversation. Speakers may use humor pro-socially, to build in-group solidarity, or anti-socially, to exclude and denigrate the targets of the humor. Most of the research has focused on how humor is co-constructed and used among friends, and how speakers support it. Increasingly, corpus-supported research is beginning to reshape the field, introducing quantitative concerns, as well as multimodal data and analyses. Overall, the linguistics of humor is a dynamic and rapidly changing field.

Article

Psycholinguistics and Aging  

Michael Ramscar

Healthy aging is associated with many cognitive, linguistic, and behavioral changes. For example, adults’ reaction times slow on many tasks as they grow older, while their memories, appear to fade, especially for apparently basic linguistic information such as other people’s names. These changes have traditionally been thought to reflect declines in the processing power of human minds and brains as they age. However, from the perspective of the information-processing paradigm that dominates the study of mind, the question of whether cognitive processing capacities actually decline across the life span can only be scientifically answered in relation to functional models of the information processes that are presumed to be involved in cognition. Consider, for example, the problem of recalling someone’s name. We are usually reminded of the names of friends on a regular basis, and this makes us good at remembering them. However, as we move through life, we inevitably learn more names. Sometimes we hear these new names only once. As we learn each new name, the average exposure we will have had to any individual name we know is likely to decline, while the number of different names we know is likely to increase. This in turn is likely to make the task of recalling a particular name more complex. One consequence of this is as follows: If Mary can only recall names with 95% accuracy at age 60—when she knows 900 names—does she necessarily have a worse memory than she did at age 16, when she could recall any of only 90 names with 98% accuracy? Answering the question of whether Mary’s memory for names has actually declined (or improved even) will require some form of quantification of Mary’s knowledge of names at any given point in her life and the definition of a quantitative model that predicts expected recall performance for a given amount of name knowledge, as well as an empirical measure of the accuracy of the model across a wide range of circumstances. Until the early 21st century, the study of cognition and aging was dominated by approaches that failed to meet these requirements. Researchers simply established that Mary’s name recall was less accurate at a later age than it was at an earlier one, and took this as evidence that Mary’s memory processes had declined in some significant way. However, as computational approaches to studying cognitive—and especially psycholinguistic—processes and processing became more widespread, a number of matters related to the development of processing across the life span began to become apparent: First, the complexity involved in establishing whether or not Mary’s name recall did indeed become less accurate with age began to be better understood. Second, when the impact of learning on processing was controlled for, it became apparent that at least some processes showed no signs of decline at all in healthy aging. Third, the degree to which the environment—both in terms of its structure, and its susceptibility to change—further complicates our understanding of life-span cognitive performance also began to be better comprehended. These new findings not only promise to change our understanding of healthy cognitive aging, but also seem likely to alter our conceptions of cognition and language themselves.