1-6 of 6 Results

  • Keywords: language learning x
Clear all

Article

Katie Wagner and David Barner

Human experience of color results from a complex interplay of perceptual and linguistic systems. At the lowest level of perception, the human visual system transforms the visible light portion of the electromagnetic spectrum into a rich, continuous three-dimensional experience of color. Despite our ability to perceptually discriminate millions of different color shades, most languages categorize color into a number of discrete color categories. While the meanings of color words are constrained by perception, perception does not fully define them. Once color words are acquired, they may in turn influence our memory and processing speed for color, although it is unlikely that language influences the lowest levels of color perception. One approach to examining the relationship between perception and language in forming our experience of color is to study children as they acquire color language. Children produce color words in speech for many months before acquiring adult meanings for color words. Research in this area has focused on whether children’s difficulties stem from (a) an inability to identify color properties as a likely candidate for word meanings, or alternatively (b) inductive learning of language-specific color word boundaries. Lending plausibility to the first account, there is evidence that children more readily attend to object traits like shape, rather than color, as likely candidates for word meanings. However, recent evidence has found that children have meanings for some color words before they begin to produce them in speech, indicating that in fact, they may be able to successfully identify color as a candidate for word meaning early in the color word learning process. There is also evidence that prelinguistic infants, like adults, perceive color categorically. While these perceptual categories likely constrain the meanings that children consider, they cannot fully define color word meanings because languages vary in both the number and location of color word boundaries. Recent evidence suggests that the delay in color word acquisition primarily stems from an inductive process of refining these boundaries.

Article

First-language acquisition of morphology refers to the process whereby native speakers gain full and automatic command of the inflectional and derivational machinery of their mother tongue. Despite language diversity, evidence shows that morphological acquisition follows a shared path in development in evolving from semantically and structurally simplex and non-productive to more complex and productive. The emergence and consolidation of the central morphological systems in a language typically take place between the ages of two and six years, while mature command of all systems and subsystems can take up to 10 more years, and is mediated by the consolidation of literacy skills. Morphological learning in both inflection and derivation is always interwoven with lexical growth, and derivational acquisition is highly dependent on the development of a large and coherent lexicon. Three critical factors platform the acquisition of morphology. One factor is the input patterns in the ambient language, including various types of frequency. Input provides the context for children to pay attention to morphological markers as meaningful cues to caregivers’ intentions in interactive sociopragmatic settings of joint attention. A second factor is language typology, given that languages differ in the amount of word-internal information they package in words. The “typological impact” in morphology directs children to the ways pertinent conceptual and structural information is encoded in morphological structures. It is thus responsible for great differences among languages in the timing and pace of learning morphological categories such as passive verbs. Finally, development itself is a central mechanism that drives morphological acquisition from emergence to productivity in three senses: as the filtering device that enables the break into the morphological system, in providing the span of time necessary for the consolidation of morphological systems in children, and in hosting the cognitive changes that usher in mature morphological systems in both speech and writing in adolescents and adults.

Article

Myrto Grigoroglou and Anna Papafragou

To become competent communicators, children need to learn that what a speaker means often goes beyond the literal meaning of what the speaker says. The acquisition of pragmatics as a field is the study of how children learn to bridge the gap between the semantic meaning of words and structures and the intended meaning of an utterance. Of interest is whether young children are capable of reasoning about others’ intentions and how this ability develops over time. For a long period, estimates of children’s pragmatic sophistication were mostly pessimistic: early work on a number of phenomena showed that very young communicators were egocentric, oblivious to other interlocutors’ intentions, and overall insensitive to subtle pragmatic aspects of interpretation. Recent years have seen major shifts in the study of children’s pragmatic development. Novel methods and more fine-grained theoretical approaches have led to a reconsideration of older findings on how children acquire pragmatics across a number of phenomena and have produced a wealth of new evidence and theories. Three areas that have generated a considerable body of developmental work on pragmatics include reference (the relation between words or phrases and entities in the world), implicature (a type of inferred meaning that arises when a speaker violates conversational rules), and metaphor (a case of figurative language). Findings from these three domains suggest that children actively use pragmatic reasoning to delimit potential referents for newly encountered words, can take into account the perspective of a communicative partner, and are sensitive to some aspects of implicated and metaphorical meaning. Nevertheless, children’s success with pragmatic communication is fragile and task-dependent.

Article

Ocke-Schwen Bohn

The study of second language phonetics is concerned with three broad and overlapping research areas: the characteristics of second language speech production and perception, the consequences of perceiving and producing nonnative speech sounds with a foreign accent, and the causes and factors that shape second language phonetics. Second language learners and bilinguals typically produce and perceive the sounds of a nonnative language in ways that are different from native speakers. These deviations from native norms can be attributed largely, but not exclusively, to the phonetic system of the native language. Non-nativelike speech perception and production may have both social consequences (e.g., stereotyping) and linguistic–communicative consequences (e.g., reduced intelligibility). Research on second language phonetics over the past ca. 30 years has resulted in a fairly good understanding of causes of nonnative speech production and perception, and these insights have to a large extent been driven by tests of the predictions of models of second language speech learning and of cross-language speech perception. It is generally accepted that the characteristics of second language speech are predominantly due to how second language learners map the sounds of the nonnative to the native language. This mapping cannot be entirely predicted from theoretical or acoustic comparisons of the sound systems of the languages involved, but has to be determined empirically through tests of perceptual assimilation. The most influential learner factors which shape how a second language is perceived and produced are the age of learning and the amount and quality of exposure to the second language. A very important and far-reaching finding from research on second language phonetics is that age effects are not due to neurological maturation which could result in the attrition of phonetic learning ability, but to the way phonetic categories develop as a function of experience with surrounding sound systems.

Article

Yarden Kedar

A fundamental question in epistemological philosophy is whether reason may be based on a priori knowledge—that is, knowledge that precedes and which is independent of experience. In modern science, the concept of innateness has been associated with particular behaviors and types of knowledge, which supposedly have been present in the organism since birth (in fact, since fertilization)—prior to any sensory experience with the environment. This line of investigation has been traditionally linked to two general types of qualities: the first consists of instinctive and inflexible reflexes, traits, and behaviors, which are apparent in survival, mating, and rearing activities. The other relates to language and cognition, with certain concepts, ideas, propositions, and particular ways of mental computation suggested to be part of one’s biological make-up. While both these types of innatism have a long history (e.g., debate by Plato and Descartes), some bias appears to exist in favor of claims for inherent behavioral traits, which are typically accepted when satisfactory empirical evidence is provided. One famous example is Lorenz’s demonstration of imprinting, a natural phenomenon that obeys a predetermined mechanism and schedule (incubator-hatched goslings imprinted on Lorenz’s boots, the first moving object they encountered). Likewise, there seems to be little controversy in regard to predetermined ways of organizing sensory information, as is the case with the detection and classification of shapes and colors by the mind. In contrast, the idea that certain types of abstract knowledge may be part of an organism’s biological endowment (i.e., not learned) is typically met with a greater sense of skepticism. The most influential and controversial claim for such innate knowledge in modern science is Chomsky’s nativist theory of Universal Grammar in language, which aims to define the extent to which human languages can vary; and the famous Argument from the Poverty of the Stimulus. The main Chomskyan hypothesis is that all human beings share a preprogrammed linguistic infrastructure consisting of a finite set of general principles, which can generate (through combination or transformation) an infinite number of (only) grammatical sentences. Thus, the innate grammatical system constrains and structures the acquisition and use of all natural languages.

Article

Mineharu Nakayama

The Japanese psycholinguistics research field is moving rapidly in many different directions as it includes various sub-linguistics fields (e.g., phonetics/phonology, syntax, semantics, pragmatics, discourse studies). Naturally, diverse studies have reported intriguing findings that shed light on our language mechanism. This article presents a brief overview of some of the notable early 21st century studies mainly from the language acquisition and processing perspectives. The topics are divided into various sections: the sound system, the script forms, reading and writing, morpho-syntactic studies, word and sentential meanings, and pragmatics and discourse studies sections. Studies on special populations are also mentioned. Studies on the Japanese sound system have advanced our understanding of L1 and L2 (first and second language) acquisition and processing. For instance, more evidence is provided that infants form adult-like phonological grammar by 14 months in L1, and disassociation of prosody is reported from one’s comprehension in L2. Various cognitive factors as well as L1 influence the L2 acquisition process. As the Japanese language users employ three script forms (hiragana, katakana, and kanji) in a single sentence, orthographic processing research reveal multiple pathways to process information and the influence of memory. Adult script decoding and lexical processing has been well studied and research data from special populations further helps us to understand our vision-to-language mapping mechanism. Morpho-syntactic and semantic studies include a long debate on the nativist (generative) and statistical learning approaches in L1 acquisition. In particular, inflectional morphology and quantificational scope interaction in L1 acquisition bring pros and cons of both approaches as a single approach. Investigating processing mechanisms means studying cognitive/perceptual devices. Relative clause processing has been well-discussed in Japanese because Japanese has a different word order (SOV) from English (SVO), allows unpronounced pronouns and pre-verbal word permutations, and has no relative clause marking at the verbal ending (i.e., morphologically the same as the matrix ending). Behavioral and neurolinguistic data increasingly support incremental processing like SVO languages and an expectancy-driven processor in our L1 brain. L2 processing, however, requires more study to uncover its mechanism, as the literature is scarce in both L2 English by Japanese speakers and L2 Japanese by non-Japanese speakers. Pragmatic and discourse processing is also an area that needs to be explored further. Despite the typological difference between English and Japanese, the studies cited here indicate that our acquisition and processing devices seem to adjust locally while maintaining the universal mechanism.