1-2 of 2 Results

  • Keywords: lexical distributions x
Clear all

Article

Michael Ramscar

Healthy aging is associated with many cognitive, linguistic, and behavioral changes. For example, adults’ reaction times slow on many tasks as they grow older, while their memories, appear to fade, especially for apparently basic linguistic information such as other people’s names. These changes have traditionally been thought to reflect declines in the processing power of human minds and brains as they age. However, from the perspective of the information-processing paradigm that dominates the study of mind, the question of whether cognitive processing capacities actually decline across the life span can only be scientifically answered in relation to functional models of the information processes that are presumed to be involved in cognition. Consider, for example, the problem of recalling someone’s name. We are usually reminded of the names of friends on a regular basis, and this makes us good at remembering them. However, as we move through life, we inevitably learn more names. Sometimes we hear these new names only once. As we learn each new name, the average exposure we will have had to any individual name we know is likely to decline, while the number of different names we know is likely to increase. This in turn is likely to make the task of recalling a particular name more complex. One consequence of this is as follows: If Mary can only recall names with 95% accuracy at age 60—when she knows 900 names—does she necessarily have a worse memory than she did at age 16, when she could recall any of only 90 names with 98% accuracy? Answering the question of whether Mary’s memory for names has actually declined (or improved even) will require some form of quantification of Mary’s knowledge of names at any given point in her life and the definition of a quantitative model that predicts expected recall performance for a given amount of name knowledge, as well as an empirical measure of the accuracy of the model across a wide range of circumstances. Until the early 21st century, the study of cognition and aging was dominated by approaches that failed to meet these requirements. Researchers simply established that Mary’s name recall was less accurate at a later age than it was at an earlier one, and took this as evidence that Mary’s memory processes had declined in some significant way. However, as computational approaches to studying cognitive—and especially psycholinguistic—processes and processing became more widespread, a number of matters related to the development of processing across the life span began to become apparent: First, the complexity involved in establishing whether or not Mary’s name recall did indeed become less accurate with age began to be better understood. Second, when the impact of learning on processing was controlled for, it became apparent that at least some processes showed no signs of decline at all in healthy aging. Third, the degree to which the environment—both in terms of its structure, and its susceptibility to change—further complicates our understanding of life-span cognitive performance also began to be better comprehended. These new findings not only promise to change our understanding of healthy cognitive aging, but also seem likely to alter our conceptions of cognition and language themselves.

Article

Corpora are an all-important resource in linguistics, as they constitute the primary source for large-scale examples of language usage. This has been even more evident in recent years, with the increasing availability of texts in digital format leading more and more corpus linguistics toward a “big data” approach. As a consequence, the quantitative methods adopted in the field are becoming more sophisticated and various. When it comes to morphology, corpora represent a primary source of evidence to describe morpheme usage, and in particular how often a particular morphological pattern is attested in a given language. There is hence a tight relation between corpus linguistics and the study of morphology and the lexicon. This relation, however, can be considered bi-directional. On the one hand, corpora are used as a source of evidence to develop metrics and train computational models of morphology: by means of corpus data it is possible to quantitatively characterize morphological notions such as productivity, and corpus data are fed to computational models to capture morphological phenomena at different levels of description. On the other hand, morphology has also been applied as an organization principle to corpora. Annotations of linguistic data often adopt morphological notions as guidelines. The resulting information, either obtained from human annotators or relying on automatic systems, makes corpora easier to analyze and more convenient to use in a number of applications.