1-5 of 5 Results

  • Keywords: mental lexicon x
Clear all

Article

Words are the backbone of language activity. An average 20-year-old native speaker of English will have a vocabulary of about 42,000 words. These words are connected with one another within the larger network of lexical knowledge that is termed the mental lexicon. The metaphor of a mental lexicon has played a central role in the development of theories of language and mind and has provided an intellectual meeting ground for psychologists, neurolinguists, and psycholinguists. Research on the mental lexicon has shown that lexical knowledge is not static. New words are acquired throughout the life span, creating very large increases in the richness of connectivity within the lexical system and changing the system as a whole. Because most people in the world speak more than one language, the default mental lexicon may be a multilingual one. Such a mental lexicon differs substantially from a lexicon of an individual language and would lead to the creation of new integrated lexical systems due to the pressure on the system to organize and access lexical knowledge in a homogenous manner. The mental lexicon contains both word knowledge and morphological knowledge. There is also evidence that it contains multiword strings such as idioms and lexical bundles. This speaks in support of a nonrestrictive “big tent” view of units of representation within the mental lexicon. Changes in research on lexical representations in language processing have emphasized lexical action and the role of learning. Although the metaphor of words as distinct representations within a lexical store has served to advance knowledge, it is more likely that words are best seen as networks of activity that are formed and affected by experience and learning throughout the life span.

Article

Speech production is an important aspect of linguistic competence. An attempt to understand linguistic morphology without speech production would be incomplete. A central research question develops from this perspective: what is the role of morphology in speech production. Speech production researchers collect many different types of data and much of that data has informed how linguists and psycholinguists characterize the role of linguistic morphology in speech production. Models of speech production play an important role in the investigation of linguistic morphology. These models provide a framework, which allows researchers to explore the role of morphology in speech production. However, models of speech production generally focus on different aspects of the production process. These models are split between phonetic models (which attempt to understand how the brain creates motor commands for uttering and articulating speech) and psycholinguistic models (which attempt to understand the cognitive processes and representation of the production process). Models that merge these two model types, phonetic and psycholinguistic models, have the potential to allow researchers the possibility to make specific predictions about the effects of morphology on speech production. Many studies have explored models of speech production, but the investigation of the role of morphology and how morphological properties may be represented in merged speech production models is limited.

Article

Psycholinguistics is the study of how language is acquired, represented, and used by the human mind; it draws on knowledge about both language and cognitive processes. A central topic of debate in psycholinguistics concerns the balance between storage and processing. This debate is especially evident in research concerning morphology, which is the study of word structure, and several theoretical issues have arisen concerning the question of how (or whether) morphology is represented and what function morphology serves in the processing of complex words. Five theoretical approaches have emerged that differ substantially in the emphasis placed on the role of morphemic representations during the processing of morphologically complex words. The first approach minimizes processing by positing that all words, even morphologically complex ones, are stored and recognized as whole units, without the use of morphemic representations. The second approach posits that words are represented and processed in terms of morphemic units. The third approach is a mixture of the first two approaches and posits that a whole-access route and decomposition route operate in parallel. A fourth approach posits that both whole word representations and morphemic representations are used, and that these two types of information interact. A fifth approach proposes that morphology is not explicitly represented, but rather, emerges from the co-activation of orthographic/phonological representations and semantic representations. These competing approaches have been evaluated using a wide variety of empirical methods examining, for example, morphological priming, the role of constituent and word frequency, and the role of morphemic position. For the most part, the evidence points to the involvement of morphological representations during the processing of complex words. However, the specific way in which these representations are used is not yet fully known.

Article

Speakers can transfer meanings to each other because they represent them in a perceptible form. Phonology and syntactic structure are two levels of linguistic form. Morphemes are situated in-between them. Like phonemes they have a phonological component, and like syntactic structures they carry relational information. A distinction can be made between inflectional and lexical morphology. Both are devices in the service of communicative efficiency, by highlighting grammatical and semantic relations, respectively. Morphological structure has also been studied in psycholinguistics, especially by researchers who are interested in the process of visual word recognition. They found that a word is recognized more easily when it belongs to a large morphological family, which suggests that the mental lexicon is structured along morphological lines. The semantic transparency of a word’s morphological structure plays an important role. Several findings also suggest that morphology plays an important role at a pre-lexical processing level as well. It seems that morphologically complex words are subjected to a process of blind morphological decomposition before lexical access is attempted.

Article

Yu-Ying Chuang and R. Harald Baayen

Naive discriminative learning (NDL) and linear discriminative learning (LDL) are simple computational algorithms for lexical learning and lexical processing. Both NDL and LDL assume that learning is discriminative, driven by prediction error, and that it is this error that calibrates the association strength between input and output representations. Both words’ forms and their meanings are represented by numeric vectors, and mappings between forms and meanings are set up. For comprehension, form vectors predict meaning vectors. For production, meaning vectors map onto form vectors. These mappings can be learned incrementally, approximating how children learn the words of their language. Alternatively, optimal mappings representing the end state of learning can be estimated. The NDL and LDL algorithms are incorporated in a computational theory of the mental lexicon, the ‘discriminative lexicon’. The model shows good performance both with respect to production and comprehension accuracy, and for predicting aspects of lexical processing, including morphological processing, across a wide range of experiments. Since, mathematically, NDL and LDL implement multivariate multiple regression, the ‘discriminative lexicon’ provides a cognitively motivated statistical modeling approach to lexical processing.