1-2 of 2 Results  for:

  • Keywords: distributional semantics x
Clear all

Article

Computational psycholinguistics has a long history of investigation and modeling of morphological phenomena. Several computational models have been developed to deal with the processing and production of morphologically complex forms and with the relation between linguistic morphology and psychological word representations. Historically, most of this work has focused on modeling the production of inflected word forms, leading to the development of models based on connectionist principles and other data-driven models such as Memory-Based Language Processing (MBLP), Analogical Modeling of Language (AM), and Minimal Generalization Learning (MGL). In the context of inflectional morphology, these computational approaches have played an important role in the debate between single and dual mechanism theories of cognition. Taking a different angle, computational models based on distributional semantics have been proposed to account for several phenomena in morphological processing and composition. Finally, although several computational models of reading have been developed in psycholinguistics, none of them have satisfactorily addressed the recognition and reading aloud of morphologically complex forms.

Article

Corpora are an all-important resource in linguistics, as they constitute the primary source for large-scale examples of language usage. This has been even more evident in recent years, with the increasing availability of texts in digital format leading more and more corpus linguistics toward a “big data” approach. As a consequence, the quantitative methods adopted in the field are becoming more sophisticated and various. When it comes to morphology, corpora represent a primary source of evidence to describe morpheme usage, and in particular how often a particular morphological pattern is attested in a given language. There is hence a tight relation between corpus linguistics and the study of morphology and the lexicon. This relation, however, can be considered bi-directional. On the one hand, corpora are used as a source of evidence to develop metrics and train computational models of morphology: by means of corpus data it is possible to quantitatively characterize morphological notions such as productivity, and corpus data are fed to computational models to capture morphological phenomena at different levels of description. On the other hand, morphology has also been applied as an organization principle to corpora. Annotations of linguistic data often adopt morphological notions as guidelines. The resulting information, either obtained from human annotators or relying on automatic systems, makes corpora easier to analyze and more convenient to use in a number of applications.