1-2 of 2 Results  for:

  • Keywords: language processing x
  • Phonetics/Phonology x
Clear all

Article

Connectionism in Linguistic Theory  

Xiaowei Zhao

Connectionism is an important theoretical framework for the study of human cognition and behavior. Also known as Parallel Distributed Processing (PDP) or Artificial Neural Networks (ANN), connectionism advocates that learning, representation, and processing of information in mind are parallel, distributed, and interactive in nature. It argues for the emergence of human cognition as the outcome of large networks of interactive processing units operating simultaneously. Inspired by findings from neural science and artificial intelligence, connectionism is a powerful computational tool, and it has had profound impact on many areas of research, including linguistics. Since the beginning of connectionism, many connectionist models have been developed to account for a wide range of important linguistic phenomena observed in monolingual research, such as speech perception, speech production, semantic representation, and early lexical development in children. Recently, the application of connectionism to bilingual research has also gathered momentum. Connectionist models are often precise in the specification of modeling parameters and flexible in the manipulation of relevant variables in the model to address relevant theoretical questions, therefore they can provide significant advantages in testing mechanisms underlying language processes.

Article

Discriminative Learning and the Lexicon: NDL and LDL  

Yu-Ying Chuang and R. Harald Baayen

Naive discriminative learning (NDL) and linear discriminative learning (LDL) are simple computational algorithms for lexical learning and lexical processing. Both NDL and LDL assume that learning is discriminative, driven by prediction error, and that it is this error that calibrates the association strength between input and output representations. Both words’ forms and their meanings are represented by numeric vectors, and mappings between forms and meanings are set up. For comprehension, form vectors predict meaning vectors. For production, meaning vectors map onto form vectors. These mappings can be learned incrementally, approximating how children learn the words of their language. Alternatively, optimal mappings representing the end state of learning can be estimated. The NDL and LDL algorithms are incorporated in a computational theory of the mental lexicon, the ‘discriminative lexicon’. The model shows good performance both with respect to production and comprehension accuracy, and for predicting aspects of lexical processing, including morphological processing, across a wide range of experiments. Since, mathematically, NDL and LDL implement multivariate multiple regression, the ‘discriminative lexicon’ provides a cognitively motivated statistical modeling approach to lexical processing.