1-3 of 3 Results

  • Keywords: phonotactics x
Clear all

Article

Paul de Lacy

Phonology has both a taxonomic/descriptive and cognitive meaning. In the taxonomic/descriptive context, it refers to speech sound systems. As a cognitive term, it refers to a part of the brain’s ability to produce and perceive speech sounds. This article focuses on research in the cognitive domain. The brain does not simply record speech sounds and “play them back.” It abstracts over speech sounds, and transforms the abstractions in nontrivial ways. Phonological cognition is about what those abstractions are, and how they are transformed in perception and production. There are many theories about phonological cognition. Some theories see it as the result of domain-general mechanisms, such as analogy over a Lexicon. Other theories locate it in an encapsulated module that is genetically specified, and has innate propositional content. In production, this module takes as its input phonological material from a Lexicon, and refers to syntactic and morphological structure in producing an output, which involves nontrivial transformation. In some theories, the output is instructions for articulator movement, which result in speech sounds; in other theories, the output goes to the Phonetic module. In perception, a continuous acoustic signal is mapped onto a phonetic representation, which is then mapped onto underlying forms via the Phonological module, which are then matched to lexical entries. Exactly which empirical phenomena phonological cognition is responsible for depends on the theory. At one extreme, it accounts for all human speech sound patterns and realization. At the other extreme, it is little more than a way of abstracting over speech sounds. In the most popular Generative conception, it explains some sound patterns, with other modules (e.g., the Lexicon and Phonetic module) accounting for others. There are many types of patterns, with names such as “assimilation,” “deletion,” and “neutralization”—a great deal of phonological research focuses on determining which patterns there are, which aspects are universal and which are language-particular, and whether/how phonological cognition is responsible for them. Phonological computation connects with other cognitive structures. In the Generative T-model, the phonological module’s input includes morphs of Lexical items along with at least some morphological and syntactic structure; the output is sent to either a Phonetic module, or directly to the neuro-motor interface, resulting in articulator movement. However, other theories propose that these modules’ computation proceeds in parallel, and that there is bidirectional communication between them. The study of phonological cognition is a young science, so many fundamental questions remain to be answered. There are currently many different theories, and theoretical diversity over the past few decades has increased rather than consolidated. In addition, new research methods have been developed and older ones have been refined, providing novel sources of evidence. Consequently, phonological research is both lively and challenging, and is likely to remain that way for some time to come.

Article

Maria Gouskova

Phonotactics is the study of restrictions on possible sound sequences in a language. In any language, some phonotactic constraints can be stated without reference to morphology, but many of the more nuanced phonotactic generalizations do make use of morphosyntactic and lexical information. At the most basic level, many languages mark edges of words in some phonological way. Different phonotactic constraints hold of sounds that belong to the same morpheme as opposed to sounds that are separated by a morpheme boundary. Different phonotactic constraints may apply to morphemes of different types (such as roots versus affixes). There are also correlations between phonotactic shapes and following certain morphosyntactic and phonological rules, which may correlate to syntactic category, declension class, or etymological origins. Approaches to the interaction between phonotactics and morphology address two questions: (1) how to account for rules that are sensitive to morpheme boundaries and structure and (2) determining the status of phonotactic constraints associated with only some morphemes. Theories differ as to how much morphological information phonology is allowed to access. In some theories of phonology, any reference to the specific identities or subclasses of morphemes would exclude a rule from the domain of phonology proper. These rules are either part of the morphology or are not given the status of a rule at all. Other theories allow the phonological grammar to refer to detailed morphological and lexical information. Depending on the theory, phonotactic differences between morphemes may receive direct explanations or be seen as the residue of historical change and not something that constitutes grammatical knowledge in the speaker’s mind.

Article

Jane Chandlee and Jeffrey Heinz

Computational phonology studies the nature of the computations necessary and sufficient for characterizing phonological knowledge. As a field it is informed by the theories of computation and phonology. The computational nature of phonological knowledge is important because at a fundamental level it is about the psychological nature of memory as it pertains to phonological knowledge. Different types of phonological knowledge can be characterized as computational problems, and the solutions to these problems reveal their computational nature. In contrast to syntactic knowledge, there is clear evidence that phonological knowledge is computationally bounded to the so-called regular classes of sets and relations. These classes have multiple mathematical characterizations in terms of logic, automata, and algebra with significant implications for the nature of memory. In fact, there is evidence that phonological knowledge is bounded by particular subregular classes, with more restrictive logical, automata-theoretic, and algebraic characterizations, and thus by weaker models of memory.