Show Summary Details

Page of

Printed from Oxford Research Encyclopedias, Natural Hazard Science. Under the terms of the licence agreement, an individual user may print out a single article for personal use (for details see Privacy Policy and Legal Notice).

date: 05 March 2021

Flood Risk Analysislocked

  • Bruno MerzBruno MerzHelmholtz Centre Potsdam

Summary

Floods affect more people worldwide than any other natural hazard. Flood risk results from the interplay of a range of processes. For river floods, these are the flood-triggering processes in the atmosphere, runoff generation in the catchment, flood waves traveling through the river network, possibly flood defense failure, and finally, inundation and damage processes in the flooded areas. In addition, ripple effects, such as regional or even global supply chain disruptions, may occur.

Effective and efficient flood risk management requires understanding and quantifying the flood risk and its possible future developments. Hence, risk analysis is a key element of flood risk management. Risk assessments can be structured according to three questions: What can go wrong? How likely is it that it will happen? If it goes wrong, what are the consequences? Before answering these questions, the system boundaries, the processes to be included, and the detail of the analysis need to be carefully selected.

One of the greatest challenges in flood risk analyses is the identification of the set of failure or damage scenarios. Often, extreme events beyond the experience of the analyst are missing, which may bias the risk estimate. Another challenge is the estimation of probabilities. There are at most a few observed events where data on the flood situation, such as inundation extent, depth, and loss are available. That means that even in the most optimistic situation there are only a few data points to validate the risk estimates. The situation is even more delicate when the risk has to be quantified for important infrastructure objects, such as breaching of a large dam or flooding of a nuclear power plant. Such events are practically unrepeatable. Hence, estimating of probabilities needs to be based on all available evidence, using observations whenever possible, but also including theoretical knowledge, modeling, specific investigations, experience, or expert judgment. As a result, flood risk assessments are often associated with large uncertainties. Examples abound where authorities, people at risk, and disaster management have been taken by surprise due to unexpected failure scenarios. This is not only a consequence of the complexity of flood risk systems, but may also be attributed to cognitive biases, such as being overconfident in the risk assessment. Hence, it is essential to ask: How wrong can the risk analysis be and still guarantee that the outcome is acceptable?

You do not currently have access to this article

Login

Please login to access the full content.

Subscribe

Access to the full content requires a subscription