Show Summary Details

Page of

PRINTED FROM the OXFORD RESEARCH ENCYCLOPEDIA, NATURAL HAZARD SCIENCE (oxfordre.com/naturalhazardscience). (c) Oxford University Press USA, 2019. All Rights Reserved. Personal use only; commercial use is strictly prohibited (for details see Privacy Policy and Legal Notice).

date: 26 June 2019

Summary and Keywords

Flood losses in the United States have increased dramatically over the course of the past century, averaging US$7.96 billion in damages per year for the 30-year period ranging from 1985 to 2014. In terms of human fatalities, floods are the second largest weather-related hazard in the United States, causing approximately 80 deaths per year over the same period. Given the wide-reaching impacts of flooding across the United States, the evaluation of flood-generating mechanisms and of the drivers of changing flood hazard are two areas of active research.

Flood frequency analysis has traditionally been based on statistical analyses of the observed flood distributions that rarely distinguish among physical flood-generating processes. However, recent scientific advances have shown that flood frequency distributions are often characterized by “mixed populations” arising from multiple flood-generating mechanisms, which can be challenging to disentangle. Flood events can be driven by a variety of physical mechanisms, including rain and snowmelt, frontal systems, monsoons, intense tropical cyclones, and more generic cyclonic storms.

Temporal changes in the frequency and magnitude of flooding have also been the subject of a large body of work in recent decades. The science has moved from a focus on the detection of trends and shifts in flood peak distributions towards the attribution of these changes, with particular emphasis on climatic and anthropogenic factors, including urbanization and changes in agricultural practices. A better understanding of these temporal changes in flood peak distributions, as well as of the physical flood-generating mechanisms, will enable us to move forward with the estimation of future flood design values in the context of both climatic and anthropogenic change.

Keywords: flooding, United States, detection, attribution, mixed distributions, urbanization, agriculture, flood frequency, hydrology, precipitation

Access to the complete content on Oxford Research Encyclopedia of Natural Hazard Science requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.