Show Summary Details

Page of

PRINTED FROM the OXFORD RESEARCH ENCYCLOPEDIA, NATURAL HAZARD SCIENCE (oxfordre.com/naturalhazardscience). (c) Oxford University Press USA, 2019. All Rights Reserved. Personal use only; commercial use is strictly prohibited (for details see Privacy Policy and Legal Notice).

date: 20 July 2019

Summary and Keywords

Flash floods are one of the world’s deadliest and costliest weather-related natural hazards. In the United States alone, they account for an average of approximately 80 fatalities per year. Damages to crops and infrastructure are particularly costly. In 2015 alone, flash floods accounted for over $2 billion of losses; this was nearly half the total cost of damage caused by all weather hazards. Flash floods can be either pluvial or fluvial, but their occurrence is primarily driven by intense rainfall. Predicting the specific locations and times of flash floods requires a multidisciplinary approach because the severity of the impact depends on meteorological factors, surface hydrologic preconditions and controls, spatial patterns of sensitive infrastructure, and the dynamics describing how society is using or occupying the infrastructure.

Real-time flash flood forecasting systems rely on the observations and/or forecasts of rainfall, preexisting soil moisture and river-stage states, and geomorphological characteristics of the land surface and subsurface. The design of the forecast systems varies across the world in terms of their forcing, methodology, forecast horizon, and temporal and spatial scales. Their diversity can be attributed at least partially to the availability of observing systems and numerical weather prediction models that provide information at relevant scales regarding the location, timing, and severity of impending flash floods. In the United States, the National Weather Service (NWS) has relied upon the flash flood guidance (FFG) approach for decades. This is an inverse method in which a hydrologic model is run under differing rainfall scenarios until flooding conditions are reached. Forecasters then monitor observations and forecasts of rainfall and issue warnings to the public and local emergency management communities when the rainfall amounts approach or exceed FFG thresholds. This technique has been expanded to other countries throughout the world. Another approach, used in Europe, relies on model forecasts of heavy rainfall, where anomalous conditions are identified through comparison of the forecast cumulative rainfall (in space and time) with a 20-year archive of prior forecasts. Finally, explicit forecasts of flash flooding are generated in real time across the United States based on estimates of rainfall from a national network of weather radar systems.

Keywords: flash flood, flash flood guidance (FFG), KINEROS2 (K2), COSMO-LEPS, European Flood Awareness System (EFAS), European Precipitation Index based on simulated Climatology (EPIC), MultiRadar MultiSensor (MRMS), Flooded Locations and Simulated Hydrographs (FLASH)

Access to the complete content on Oxford Research Encyclopedia of Natural Hazard Science requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.