1-2 of 2 Results  for:

  • Policy and Governance x
Clear all


Simon Allen, Holger Frey, Wilfried Haeberli, Christian Huggel, Marta Chiarle, and Marten Geertsema

Glacier and permafrost hazards in cold mountain regions encompass various flood and mass movement processes that are strongly affected by rapid and cumulative climate-induced changes in the alpine cryosphere. These processes are characterized by a range of spatial and temporal dimensions, from small volume icefalls and rockfalls that present a frequent but localized danger to less frequent but large magnitude process chains that can threaten people and infrastructure located far downstream. Glacial lake outburst floods (GLOFs) have proven particularly devastating, accounting for the most far-reaching disasters in high mountain regions globally. Comprehensive assessments of glacier and permafrost hazards define two core components (or outcomes): 1. Susceptibility and stability assessment: Identifies likelihood and origin of an event based on analyses of wide-ranging triggering and conditioning factors driven by interlinking atmospheric, cryospheric, geological, geomorphological, and hydrological processes. 2. Hazard mapping: Identifies the potential impact on downslope and downstream areas through a combination of process modeling and field mapping that provides the scientific basis for decision making and planning. Glacier and permafrost hazards gained prominence around the mid-20th century, especially following a series of major disasters in the Peruvian Andes, Alaska, and the Swiss Alps. At that time, related hazard assessments were reactionary and event-focused, aiming to understand the causes of the disasters and to reduce ongoing threats to communities. These disasters and others that followed, such as Kolka Karmadon in 2002, established the fundamental need to consider complex geosystems and cascading processes with their cumulative downstream impacts as one of the distinguishing principles of integrative glacier and permafrost hazard assessment. The widespread availability of satellite imagery enables a preemptive approach to hazard assessment, beginning with regional scale first-order susceptibility and hazard assessment and modeling that provide a first indication of possible unstable slopes or dangerous lakes and related cascading processes. Detailed field investigations and scenario-based hazard mapping can then be targeted to high-priority areas. In view of the rapidly changing mountain environment, leading beyond historical precedence, there is a clear need for future-oriented scenarios to be integrated into the hazard assessment that consider, for example, the threat from new lakes that are projected to emerge in a deglaciating landscape. In particular, low-probability events with extreme magnitudes are a challenge for authorities to plan for, but such events can be appropriately considered as a worst-case scenario in a comprehensive, forward-looking, multiscenario hazard assessment.


Maria Papathoma-Köhle and Dale Dominey-Howes

The second priority of the Sendai Framework for Disaster Risk Reduction 2015–2030 stresses that, to efficiently manage risk posed by natural hazards, disaster risk governance should be strengthened for all phases of the disaster cycle. Disaster management should be based on adequate strategies and plans, guidance, and inter-sector coordination and communication, as well as the participation and inclusion of all relevant stakeholders—including the general public. Natural hazards that occur with limited-notice or no-notice (LNN) challenge these efforts. Different types of natural hazards present different challenges to societies in the Global North and the Global South in terms of detection, monitoring, and early warning (and then response and recovery). For example, some natural hazards occur suddenly with little or no warning (e.g., earthquakes, landslides, tsunamis, snow avalanches, flash floods, etc.) whereas others are slow onset (e.g., drought and desertification). Natural hazards such as hurricanes, volcanic eruptions, and floods may unfold at a pace that affords decision-makers and emergency managers enough time to affect warnings and to undertake preparedness and mitigative activities. Others do not. Detection and monitoring technologies (e.g., seismometers, stream gauges, meteorological forecasting equipment) and early warning systems (e.g., The Australian Tsunami Warning System) have been developed for a number of natural hazard types. However, their reliability and effectiveness vary with the phenomenon and its location. For example, tsunamis generated by submarine landslides occur without notice, generally rendering tsunami-warning systems inadequate. Where warnings are unreliable or mis-timed, there are serious implications for risk governance processes and practices. To assist in the management of LNN events, we suggest emphasis should be given to the preparedness and mitigation phases of the disaster cycle, and in particular, to efforts to engage and educate the public. Risk and vulnerability assessment is also of paramount importance. The identification of especially vulnerable groups, appropriate land use planning, and the introduction and enforcement of building codes and reinforcement regulations, can all help to reduce casualties and damage to the built environment caused by unexpected events. Moreover, emergency plans have to adapt accordingly as they may differ from the evacuation plans for events with a longer lead-time. Risk transfer mechanisms, such as insurance, and public-private partnerships should be strengthened, and redevelopment should consider relocation and reinforcement of new buildings. Finally, participation by relevant stakeholders is a key concept for the management of LNN events as it is also a central component for efficient risk governance. All relevant stakeholders should be identified and included in decisions and their implementation, supported by good communication before, during, and after natural hazard events. The implications for risk governance of a number of natural hazards are presented and illustrated with examples from different countries from the Global North and the Global South.