1-1 of 1 Results  for:

  • Infrastructure x
  • Economic Analysis of Natural Hazards x
Clear all


Infrastructure systems—sometimes referred to as critical infrastructure or lifelines—provide services such as energy, water, sanitation, transportation, and communications that are essential for social and economic activities. Moreover, these systems typically serve large populations and comprise geographically extensive networks. They are also highly interdependent, so outages in one system such as electric power or telecommunications often affect other systems. As a consequence, when infrastructure systems are damaged in disasters, the ensuing losses are often substantial and disproportionately large. Collapse of a single major bridge, for example, can disrupt traffic flows over a broad region and impede emergency response, evacuation, commuting, freight movement, and economic recovery. Power outages in storms and other hazard events can affect millions of people, shut down businesses, and even cause fatalities. Infrastructure outages typically last from hours to weeks but can extend for months or even years. Minimizing disruptions to infrastructure services is thus key to enhancing communities’ disaster resilience. Research on infrastructure systems in natural hazards has been growing, especially as major disasters provide new data, insights, and urgency to the problem. Engineering advances have been made in understanding how hazard stresses may damage the physical components of infrastructure systems such as pipes and bridges, as well as how these elements can be designed to better withstand hazards. Modeling studies have assessed how physical damage disrupts the provision of services—for example, by indicating which neighborhoods in an urban area may be without potable water—and how disruption can be reduced through engineering and planning. The topic of infrastructure interdependencies has commanded substantial research interest. Alongside these developments, social science and interdisciplinary research has also been growing on the important topic of how infrastructure disruption in disasters has affected populations and economies. Insights into these impacts derive from a variety of information sources, including surveys, field observations, analysis of secondary data, and computational models. Such research has established the criticality of electric power and water services, for example, and the heightened vulnerability of certain population groups to infrastructure disruption. Omitting the socioeconomic impacts of infrastructure disruptions can lead to underinvestment in disaster mitigation. While the importance of understanding and reducing infrastructure disruption impacts is well-established, many important research gaps remain.